

[image: image1.wmf]

MacSema, Inc.

62971 Plateau Drive

·

 Suite 400

·

 Bend, Oregon 97701 USA

·

Phone

 (541) 389

-

1122

·

 Fax

 (541) 389

-

1888

·

techsupport@macsema.com

·

www.macsema.com

ButtonLink SDK

MacSema, Inc.

This documentation refers to:

blink32.dll

version 4.0.1
blink64.dll

version 4.0.1
blinkce.dll

version 4.0.1
Supported Platforms (blink32.dll):

Windows 2000

Windows XP

Windows VISTA

Windows 7

Windows 8

Supported Platforms (blink64.dll):

Windows 7

Windows 8
Supported Platforms (blinkce.dll):

Windows CE (ARM/X Scale processor)
Getting Started

Only one ButtonLink can be attached to the system at a time. Only one application can utilize DLL functions at a time.

Blink_On activates the ButtonLink and should be called when the application starts or in the case of mobile devices it is recommended to turn it on and off as needed to conserve battery. Call Blink_Off when the application exits.

Blink_Contact is used to determine if the ButtonLink is touching a button. After calling Blink_Contact, the value of pbyContact is 1 if there is a button present, 0 (zero) otherwise.

To start working with a button, call Blink_BtnRead. This reads the entire button and allows button functions to be performed. A call to Blink_BtnWrite, while touching the button, must be done to write all changes.

String Allocation

Any parameter prefixed with "psz" is a pointer to a null-terminated string.

Visual Basic's String type can be used, however it must first be initialized by assigning it to the return value of the String() function. For example, if 13 bytes are required, use String(13,0). If 255 bytes are required, use String(255,0).

Delphi programmers can use the string type by putting the allocated size in brackets. For example, if 13 bytes are required, string[13] would be used. An additional step is required for Delphi. Pass the data to the function StrPas, the return value can then be assigned to a normal string and used.

C/C++ programmers can use char[x], where X is the number of bytes required.

Listing Files
To find out information about files in the current directory, first call Blink_BtnGetNumFiles. The return value indicates the number of files on the button. To get filenames and file sizes, call Blink_BtnGetFileInfo, and pass the file index (from 1 to the number of files.
Passwords

Password protection is provided as a means of restricting access and preventing accidental or intentional harmful actions on the part of the user/application. If it is critical that your data not be read by a third party, you should consider using encryption routines. For maximum protection, password protect the button and encrypt the files, using different passwords for each level of protection.

Feedback

Windows 2000, XP, VISTA, 7
Feedback is sent via the WM_SETTEXT message. To specify which window procedure should receive this message, call RegisterProgressHWND and pass the window's HWND. For example, under VB a text edit can be used, pass editname.handle to RegisterProgressHWND and feedback messages will trigger the OnChange handler of the edit allowing them to be processed.

Feedback messages are in ascii and has two parts. The first part (2 characters) is an alpha feedback code to indicate the feedback type being sent, the second part is optional data and will be numeric to indicate total size or progress.

Breaking Contact During Writes

If the user breaks contact with the button during the Blink_BtnWrite operation, the file(s) being written may be incomplete, and contain a mix of old and new data. It is very important that the program handle this scenario and force the user to update the button successfully. A failure to complete the write successfully will leave the button with a Checksum error reported the next time a Blink_BtnRead is performed and the program will need to activate data recovery by passing a 1 for the recover parameter and the data should be flagged as incomplete.
Example Programs

Please refer to the CD/DVD.
Function Reference

All functions use the stdcall calling convention.

Blink_DLLVersion (CE)
The Blink_DLLVersion function retrieves the blinkce DLL (Dynamic Link Library) version.
UNSIGNED SHORT Blink_DLLVersion(

UNSIGNED CHAR *pbyMajor,

UNSIGNED CHAR *pbyMinor

);

Parameters
*pbyMajor
[Out] Major version of the DLL.
*pbyMinor
[Out] Minor version of the DLL.
Return Values

If the function succeeds, the return value is 1.

Remarks

After a successful call, if pbyMajor=1 and pbyMinor=0 then version is v1.0.

This function is obsolete and has been left in for backward compatibility. This function has been replaced by Blink_GetDLLVersion.
Blink_GetDLLVersion (CE)
The Blink_GetDLLVersion function retrieves the full blinkce DLL (Dynamic Link Library) version.

UNSIGNED SHORT Blink_GetDLLVersion(

UNSIGNED CHAR *pbyMajor,

UNSIGNED CHAR *pbyMinor,
UNSIGNED LONG *pdwExtended

);

Parameters
*pbyMajor
[Out] Major version of the DLL.

*pbyMinor
[Out] Minor version of the DLL.

*pbwExtended
[Out] Extended version of the DLL.

Return Values

If the function succeeds, the return value is 1.

Remarks

After a successful call, if pbyMajor=1, pbyMinor=0, and pdwExtended=5, then version is 1.0.5

Blink_GetDLLVersion (2000, XP, VISTA, 7)
The Blink_GetDLLVersion function retrieves the blink DLL (Dynamic Link Library) version.

UNSIGNED SHORT Blink_GetDLLVersion(

UNSIGNED CHAR *pbyMajor,

UNSIGNED CHAR *pbyMinor

);

Parameters
*pbyMajor
[Out] Major version of the DLL.

*pbyMinor
[Out] Minor version of the DLL.

Return Values

If the function succeeds, the return value is 1.

Remarks

After a successful call, if pbyMajor=1 and pbyMinor=0 then version is 1.0.

This function is obsolete and has been left in for backward compatibility. This function has been replaced by Blink_GetDLLFullVersion.

Blink_GetDLLFullVersion (2000, XP, VISTA, 7)
The Blink_GetDLLFullVersion function retrieves the full blink DLL (Dynamic Link Library) version.

UNSIGNED SHORT Blink_GetDLLFullVersion(

UNSIGNED CHAR *pbyMajor,

UNSIGNED CHAR *pbyMinor,
UNSIGNED LONG *pdwExtended

);

Parameters
*pbyMajor
[Out] Major version of the DLL.

*pbyMinor
[Out] Minor version of the DLL.

*pbwExtended
[Out] Extended version of the DLL.

Return Values

If the function succeeds, the return value is 1.

Remarks

After a successful call, if pbyMajor=1, pbyMinor=0, and pdwExtended=5, then version is 1.0.5

Blink_GetBlinkVersion (CE)
The Blink_GetBlinkVersion function retrieves the ButtonLink firmware version.

UNSIGNED SHORT Blink_GetBlinkVersion(

UNSIGNED CHAR *pbyMajor,

UNSIGNED CHAR *pbyMinor

);

Parameters
*pbyMajor
[Out] Major version of the DLL.

*pbyMinor
[Out] Minor version of the DLL.

Return Values

If the function succeeds, the return value is 1.

Remarks

After a successful call, if pbyMajor=1 and pbyMinor=2 then version is 1.2.

The ButtonLink must be on (see Blink_On function) for this function to succeed.

Blink_GetVersion
The Blink_GetVersion function retrieves the ButtonLink firmware version.

UNSIGNED SHORT Blink_GetVersion(

UNSIGNED CHAR *pbyMajor,

UNSIGNED CHAR *pbyMinor

);

Parameters
*pbyMajor
[Out] Major version of the DLL.

*pbyMinor
[Out] Minor version of the DLL.

Return Values

If the function succeeds, the return value is 1.

Remarks

After a successful call, if pbyMajor=1 and pbyMinor=2 then version is 1.2.

The ButtonLink must be on (see Blink_On function) for this function to succeed.

Blink_FeatureSet
The Blink_FeatureSet function sets the result values that will be returned from the DLL.

UNSIGNED SHORT Blink_GetVersion(

UNSIGNED CHAR byMajor,

UNSIGNED CHAR byMinor

);

Parameters
byMajor
[In] Major version of the DLL.

byMinor
[In] Minor version of the DLL.

Return Values

If the function succeeds, the return value is 1.

Remarks

This feature is still under development. When this feature is set the DLL will return a result of 0(zero) when the call succeeds or give more detail as to the error that occurred.
Blink_On
The Blink_On function opens the serial port (and powers the ButtonLink) for a serial ButtonLink or opens the device driver for a USB ButtonLink.

UNSIGNED SHORT Blink_On(

SHORT nPort,

UNSIGNED LONG baudrate,
SHORT nParam
);

Parameters
nPort
[In] 1 to 8 for serial or 11 or greater to indicate USB.
baudrate
[In] 9600, 19200, 38400, 57600 or 115200
nParam
[In] Set to 0(zero) - Not currently used.

Return Values

If the function succeeds, the return value is 1.

Remarks

This function should be called once, when the application first loads, prior to calling other functions dependant on communication with the ButtonLink. Devices using a serial ButtonLink can turn the ButtonLink on and off to conserve power. The USB ButtonLink must remain active while working with the button.

Blink_SetFastMode
The Blink_SetFastMode function sets a flag for the ButtonLink to operate in fast mode. Fast mode is available for ButtonLinks with firmware version 3.1 or greater. Please refer to the Blink_GetVersion() or Blink_GetBlinkVersion() for retrieving the ButtonLink Firmware version. The fast mode reads the unique Button Serial Number and the list of files on the CMB. This mode allows faster access for reading and writing the CMB, but contact must be made with the CMB the first time a file is read from the CMB.
UNSIGNED SHORT Blink_SetFastMode(

UNSIGNED SHORT nMode

);

Parameters
nMode
[In] 1 to turn fast mode on or 0 (zero) to turn fast mode off.

Return Values

If the function succeeds, the return value is 0.

Remarks

This function should be called after turning the ButtonLink On (Blink_On() function) as it checks the firmware version to make sure the correct ButtonLink Firmware version is connected.
Blink_RegisterFeedbackHWND (CE)

The Blink_RegisterFeedbackHWND function registers a window handle(HWND) for feedback messages.

UNSIGNED SHORT Blink_RegisterFeedbackHWND(

HWND hHWND
);

Parameters
hHWND
[In] Window handle that will process the feedback messages.

Return Values

If the function succeeds, the return value is any value.

Remarks

This function is usually called once, at the start of the application. Feedback messages are sent to the HWND specified via the Windows API call SendMessage, as WM_SETTEXT. A WM_PAINT message is also sent immediately after WM_SETTEXT, since some RAD systems don't trigger their OnChange events until the paint event occurs.

The application should perform status updates, screen drawing, etc. as quickly as possible when processing the feedback data.

RegisterProgressHWND (2000, XP, VISTA, 7)

The RegisterProgressHWND function registers a window handle(HWND) for feedback messages.

UNSIGNED SHORT RegisterProgressHWND(

HWND hHWND
);

Parameters
hHWND
[In] Window handle that will process the feedback messages.

Return Values

If the function succeeds, the return value is any value.

Remarks

This function is usually called once, at the start of the application. Feedback messages are sent to the HWND specified via the Windows API call SendMessage, as WM_SETTEXT. A WM_PAINT message is also sent immediately after WM_SETTEXT, since some RAD systems don't trigger their OnChange events until the paint event occurs.

The application should perform status updates, screen drawing, etc. as quickly as possible when processing the feedback data.

Blink_Off

The Blink_Off function closes the serial port or closes the USB ButtonLink device driver.

UNSIGNED SHORT Blink_Off(void);

Parameters
None.
Return Values

If the function succeeds, the return value is 1.

Remarks

This function should be called once, when the application closes. No functions dependant on communication between the ButtonLink and button can be called after Blink_Off (unless Blink_On is called again). File manipulation can occur while the ButtonLink is off and using a serial ButtonLink. When using a USB ButtonLink this call will close all handles and require the CMB to be read before file manipulation can occur.
Blink_Count
The Blink_Count function returns the number of USB ButtonLinks connected. A serial connection can only have 1 ButtonLink connected at a time.

Int16 Blink_Count(void);

Parameters
None.

Return Values

Zero up to the quantity of ButtonLinks connected.

Remarks

This function should be called after the Blink_On call to determine the quantity of ButtonLinks connected. The Blink_SetLink call can then be used to loop through and set which link to use.
Blink_SetLink
The Blink_SetLink function opens the serial port (and powers the ButtonLink) for a serial ButtonLink or opens the device driver for a USB ButtonLink.

Int16 Blink_SetLink(

BYTE byLinkNumber

);

Parameters
byLinkNumber
[In] 0 (zero) up to the number of ButtonLinks detected minus 1.

Return Values

If the function succeeds, the return value is 1. Otherwise, it will return zero.

Remarks

This function should be called after the Blink_On call. It is recommended that the Blink_Count call is used to make sure the ButtonLink number being passed in is valid.
Blink_LinkGetSerialNum

The Blink_LinkGetSerialNum function retrieves the serial number of the ButtonLink and places it in the integer variable.

UNSIGNED SHORT Blink_LinkGetSerialNum(

INT *nSerial
);

Parameters
*nSerial
[Out] A pre-allocated integer variable.

Return Values

If the function succeeds, the return value is 0 (zero).

Remarks

Serial numbers are unique integer values.
Blink_LinkGetSerialNumber
The Blink_LinkGetSerialNumber function retrieves the serial number of the ButtonLink and places it in a char buffer(array).

UNSIGNED SHORT Blink_LinkGetSerialNumber(
BYTE byLinkNumber,
CHAR *SerialBuffer

);

Parameters
byLinkNumber
[In] The ButtonLink number.

*SerialBuffer
[Out] A pre-allocated buffer to save the data to.

Return Values

If the function succeeds, the return value is 0 (zero).

Remarks

The Blink_On call should be made before calling this function. It is recommended that the Blink_Count call is used to make sure the ButtonLink number being passed in is valid.
Blink_Contact

The Blink_Contact function checks if the ButtonLink is in contact with a button.

UNSIGNED SHORT Blink_Contact(

UNSIGNED CHAR *pbyContact

);

Parameters
*pbyContact
[Out] Variable that will receive the contact result.

Return Values

If the function succeeds, the return value is 1.

Remarks

If the function succeeds, the value of *pbyContact will be 1 if touching a button, otherwise it will be 0(zero).

Blink_BtnRead
The Blink_BtnRead function reads the entire button in to memory.

UNSIGNED SHORT Blink_BtnRead(

SHORT bRescue,

CHAR *szPassword,
SHORT nBtnReadKind

);

Parameters
bRescue
[In] 0(zero) for normal use and 1 for data recovery to ignore checksum error left from incomplete write.

*szPassword
[In] Password required if the button is locked (see Blink_BtnLock function).
nBtnReadKind
[In] See Appendix A, under the heading "Button Types", for a list of possible values.
Return Values

If the function succeeds, the return value is 0(zero).

Remarks

This function should be called after the ButtonLink has been turned on(see Blink_On function) and contact with the button has been verified(see Blink_BtnContact function).

Blink_BtnUndo

The Blink_BtnUndo function restores the memory to what was read from the button.

UNSIGNED SHORT Blink_BtnUndo(void);

Parameters
None.
Return Values

If the function succeeds, the return value is 0(zero).

Remarks

None.
Blink_BtnWrite

The Blink_BtnWrite function writes the changes to the button.

UNSIGNED SHORT Blink_BtnWrite(void);

Parameters
None.
Return Values

If the function succeeds, the return value is 0(zero).

Remarks

This function should be called after all file manipulation is complete to update the information on the button to match what is in the buffered memory. If an error occurs the program should try and retry the write as if unsuccessful in this call it can lead to a mix of old and new data (corrupt data) and the next time a read of the button is done a Checksum error will be returned and data recovery will need to be done.

Blink_BtnGetAttributes

The Blink_BtnGetAttributes function retrieves the access properties of the button.

UNSIGNED SHORT Blink_BtnUndo(void);

Parameters
None.
Return Values

The return value indicates the button type/capacity. See Appendix A, under the heading "File Access", for a list of possible values.

Remarks

None.

Blink_BtnGetReadKind

The Blink_BtnGetReadKind function returns the type of button read.

UNSIGNED SHORT Blink_BtnGetReadKind(void);

Parameters
None.
Return Values

The return value indicates the button type/capacity. See Appendix A, under the heading "Button Types", for a list of possible values.

Remarks

None.

Blink_BtnGetFreeMem

The Blink_BtnGetFreeMem function returns the amount of available space on the button, in bytes.

UNSIGNED SHORT Blink_BtnGetFreeMem(void);

Parameters
None.
Return Values

Return result is the amount of available storage, in bytes.

Remarks

Each new file stored on the button requires 5 bytes of file system overhead.

Blink_BtnGetSerialNum

The Blink_BtnGetSerialNum function retrieves the button serial number of the button and places it in a byte buffer(array).

UNSIGNED SHORT Blink_BtnGetSerialNum(

BYTE *buffer

);

Parameters
*buffer
[Out] A pre-allocated 6 byte buffer (array).

Return Values

If the function succeeds, the return value is 1.

Remarks

Serial numbers are unique, 12-digit hexadecimal values. The application must then build the serial number from the byte buffer. It is recommended that the Blink_BtnGetSerialNumStr function be used to retrieve the serial number.
Blink_BtnGetSerialNumStr

The Blink_BtnGetSerialNumStr function retrieves the button serial number of the button as a string value.

UNSIGNED SHORT Blink_BtnGetSerialNumStr(

CHAR *pszSerialStr

);

Parameters
*pszSerialStr
[Out] A pre-allocated area of memory that is at least 13 characters long.

Return Values

If the function succeeds, the return value is 1.

Remarks

Serial numbers are unique, 12-digit hexadecimal values. See the section "String Allocation" for more information.

Blink_BtnGetLotNumber

The Blink_BtnGetLotNumber function retrieves the button lot number.

UNSIGNED SHORT Blink_BtnGetLotNumber(

WORD *wLotNumber

);

Parameters
*wLotNumber
[Out] A pre-allocated numeric variable to hold the lot number.

Return Values

If the function succeeds, the return value non-zero.
Remarks

None.

Blink_BtnGetRunNumber

The Blink_BtnGetRunNumber function retrieves the button run number.

UNSIGNED SHORT Blink_BtnGetRunNumber(

WORD *dwRunNumber

);

Parameters
*dwRunNumber
[Out] A pre-allocated numeric variable to hold the run number.

Return Values

If the function succeeds, the return value non-zero.
Remarks

None.

Blink_BtnGetNumFiles

The Blink_BtnGetNumFiles function returns the number of files on the button.

UNSIGNED SHORT Blink_BtnGetNumFiles(void);

Parameters
None.
Return Values

The return value indicates the number of files on the button.

Remarks

None.

Blink_BtnGetFileInfo
The Blink_BtnGetFileInfo function gets the button file name and size from the file index (file number).

UNSIGNED SHORT Blink_BtnGetFileInfo(

SHORT nFileNumber,

CHAR *szBtnFileName,
UNSIGNED SHORT wSize

);

Parameters
nFileNumber
[In] The button file index (file number) of the file to retrieve the information.

*szBtnFileName
[Out] A pre-allocated memory location to handle at least 4 characters for the file name.

wSize
[Out] The button file size, in bytes.

Return Values

If the function succeeds, the return value is non-zero.

Remarks

This function should be called after the ButtonLink has been turned on(see Blink_On function) and contact with the button has been verified(see Blink_BtnContact function).

Blink_SetVendorCode

The Blink_SetVendorCode function sets the vendor code to try and read digitally signed buttons.

UNSIGNED SHORT Blink_SetVendorCode(

WORD szVendor

);

Parameters
*wLotNumber
[Out] This code is assigned from the factory. Please contact MacSema to obtain digitally signed buttons.
Return Values

If the function succeeds, the return value is any value.

Remarks

None.

Blink_ResetVendorCode

The Blink_ResetVendorCode function resets the vendor code to read non-digitally signed buttons.

UNSIGNED SHORT Blink_ResetVendorCode (void);

Parameters
None.
Return Values

If the function succeeds, the return value is any value.

Remarks

None.

Blink_BtnLock

The Blink_BtnLock function locks the button with the supplied password.

UNSIGNED SHORT Blink_BtnLock(

CHAR *szNewCreator

);

Parameters
*szNewCreator
[In] A password up to 6 characters long.

Return Values

If the function succeeds, the return value is non-zero.

Remarks

This call can only be used after the button has been read using the correct password.
Blink_BtnUnlock

The Blink_BtnUnlock function unlocks the button.

UNSIGNED SHORT Blink_BtnUnlock(void);

Parameters
None.
Return Values

If the function succeeds, the return value non-zero.

Remarks

This call can only be used after the button has been read using the correct password.

Blink_SetPreference
The Blink_SetPreference function sets the format data is being passed in to the Blink_BtnFileReadBlk and Blink_BtnFileWriteBlk functions.

UNSIGNED SHORT Blink_SetPreference(

UNSIGNED SHORT wPrefID,

UNSIGNED CHAR wPrefValue,
);

Parameters
wPrefID
[In] The preference to set. A value of 1 (one) selects the UNICODE preference.

wPrefValue
[In] The value to set the preference to. If wPrefID value is 1 (one) a value of 0 (zero) indicates the data passed is not UNICODE and a value of 1 (one) indicates the data passed is UNICODE.
Return Values

If the function succeeds, the return value is non-zero.

Remarks

The default for the UNICODE preference (wPrefID = 1) is to not use UNICODE (wPrefValue = 0) for the BLINK.DLL and use UNICODE (wPrefValue = 1) for the BLINKCE.DLL. This function should be called before Blink_BtnFileReadBlk or Blink_BtnFileWriteBlk functions.
Blink_BtnAddFile
The Blink_BtnAddFile function creates a file of a specified size filled with a specified character.
UNSIGNED SHORT Blink_BtnAddFile(
CHAR *szBtnFileName,
WORD wSize,
UNSIGNED SHORT wFillChar
);

Parameters
*szBtnFileName
[In] File name to create. The file name can be up to 3 characters long.
wSize
[In] The size of the file to be created. The maximum size of the file is the amount of free space (Blink_BtnFreeMem) on the button minus 5 for button file overhead.
wFillChar
[In] The character (decimal value) to fill file with. A value of 0 (zero) is null and 26 is eof (end of file).

Return Values

If the function succeeds, the return value is non-zero. The value returned is the size of the file created.
Remarks

The file added will be the currently selected file, when the call succeeds. The Blink_BtnFileWriteBlk or Blink_BtnFileWriteStr functions are used to write data to the file. A successful call to the Blink_BtnWrite function, while touching the button (Blink_BtnContact), is required to update the button.
Blink_BtnDeleteFile
The Blink_BtnDeletFile function deletes a file of a specified size filled with a specified character.

UNSIGNED SHORT Blink_BtnDeleteFile(

UNSIGNED SHORT nFileNumber

);

Parameters
nFileNumber
[In] The file index (file number) to be deleted.

Return Values

If the function succeeds, the return value is 1.

Remarks

The file information, including file name and file size, can be retrieved using the Blink_BtnGetFileInfo function to verify the correct file is being deleted. A successful call to the Blink_BtnWrite function, while touching the button (Blink_BtnContact), is required to update the button.

Blink_BtnSelectFile
The Blink_BtnSelectFile function selects the file to be modified and sets the position within the file.

UNSIGNED SHORT Blink_BtnSelectFile(

SHORT nFileNumber,

UNSIGNED SHORT wFilePos

);

Parameters
nFileNumber
[In] The file index (file number) to select.

wFilePos
[In] The position within the file.

Return Values

If the function succeeds, the return value is non-zero.

Remarks

When the call succeeds, the Blink_BtnFileWriteBlk or Blink_BtnFileWriteStr functions are used to write data to the file. A successful call to the Blink_BtnWrite function, while touching the button (Blink_BtnContact), is required to update the button.

Blink_BtnFileSetPos
The Blink_BtnFileSetPos function sets the position within the file.

UNSIGNED SHORT Blink_BtnFileSetPos(

UNSIGNED SHORT wFilePos

);

Parameters
wFilePos
[In] The position within the file.

Return Values

If the function succeeds, the return value is non-zero. The return value will be the position passed in to the function.
Remarks

The Blink_BtnFileWriteBlk or Blink_BtnFileWriteStr functions are used to write data to the file. A successful call to the Blink_BtnWrite function, while touching the button (Blink_BtnContact), is required to update the button.

Blink_BtnFileGetPos
The Blink_BtnFileGetPos function gets the position within the file.

UNSIGNED SHORT Blink_BtnFileGetPos(

WORD *wFilePos

);

Parameters
wFilePos
[Out] The current position within the file.

Return Values

If the function succeeds, the return value is 1.

Remarks

The function Blink_BtnFileSetPos is used to set the position within the file.
Blink_BtnFileReadBlk
The Blink_BtnFileReadBlk function reads a block of data from the currently selected file and position within the file.

UNSIGNED SHORT Blink_BtnFileReadBlk(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize
);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

wSize
[In] The length of the block of data to be read starting from the current position in the file.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data read.

Remarks

The Blink_BtnFileSelect and Blink_BtnFileSetPos functions are used to select the file and file position before calling this function.

Blink_BtnFileWriteBlk
The Blink_BtnFileWriteBlk function writes a block of data from the currently selected file and position within the file.

UNSIGNED SHORT Blink_BtnFileReadBlk(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize
);

Parameters
*buffer
[In] The data to be written.

wSize
[In] The length of the block of data to be written starting from the current position in the file.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data written.

Remarks

The Blink_BtnFileSelect and Blink_BtnFileSetPos functions are used to select the file and file position before calling this function. A successful call to the Blink_BtnWrite function, while touching the button (Blink_BtnContact), is required to update the button.

Blink_BtnFileReadStr
The Blink_BtnFileReadStr function reads a string of data from the currently selected file and position within the file.

UNSIGNED SHORT Blink_BtnFileReadStr(

UNSIGNED CHAR *string,

SHORT nMaxLen

);

Parameters
*string
[Out] A pre-allocated buffer to save the data to.

nMaxLen
[In] The length of the block of data to be read starting from the current position in the file.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data read.

Remarks

The Blink_BtnFileSelect and Blink_BtnFileSetPos functions are used to select the file and file position before calling this function.

Blink_BtnFileWriteStr
The Blink_BtnFileWriteStr function writes a string of data from the currently selected file and position within the file.

UNSIGNED SHORT Blink_BtnFileReadStr(

UNSIGNED CHAR *string

);

Parameters

*string
[In] The data to be written.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data written.

Remarks

The Blink_BtnFileSelect and Blink_BtnFileSetPos functions are used to select the file and file position before calling this function. A successful call to the Blink_BtnWrite function, while touching the button (Blink_BtnContact), is required to update the button.
Blink_BtnFileAppendStr
The Blink_BtnFileAppendStr function writes a string of data from the currently selected file and position within the file.

UNSIGNED SHORT Blink_BtnFileAppendStr(

UNSIGNED CHAR *string

);

Parameters
*string
[In] The data to be written.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data written.

Remarks

The Blink_BtnFileSelect and Blink_BtnFileSetPos functions are used to select the file and file position before calling this function. A successful call to the Blink_BtnWrite function, while touching the button (Blink_BtnContact), is required to update the button.

Blink_BtnFileReallocate
The Blink_BtnFileReallocate function resizes a button file to a specified size filled with a specified character.

UNSIGNED SHORT Blink_BtnFileReallocate(

SHORT nFileNumber,

WORD wNewSize,

CHAR wFillChar
);

Parameters
nFileNumber
[In] The file index (file number) to be resized.

wSize
[In] The new size of the file.
wFillChar
[In] The character (decimal value) to fill file with. A value of 0 (zero) is null and 26 is eof (end of file).

Return Values

If the function succeeds, the return value is non-zero. The value returned is the new size of the file.

Remarks

The file added will be the currently selected file, when the call succeeds. The Blink_BtnFileWriteBlk or Blink_BtnFileWriteStr functions are used to write data to the file. A successful call to the Blink_BtnWrite function, while touching the button (Blink_BtnContact), is required to update the button.

Blink_SaveButtonFile
The Blink_SaveButtonFile function saves a button file to a location on the device (PC, Tablet, handheld, etc.).

UNSIGNED SHORT Blink_SaveButtonFile(

SHORT nFileNumber,

CHAR *szFilePath

);

Parameters
nFileNumber
[In] The file index (file number) on the button to be retrieved.

*szFilePath
[In] The path (including file name) to save the file to on the device.

Return Values

If the function succeeds, the return value is 1.

Remarks

Blink_SaveButtonFileByName
The Blink_SaveButtonFileByName function saves a button file to a location on the device (PC, Tablet, handheld, etc.).

UNSIGNED SHORT Blink_SaveButtonFileByName (

CHAR *szBtnFileName,
CHAR *szFilePath

);

Parameters
*szBtnFileName
[In] The button file name to be retrieved.

*szFilePath
[In] The path (including file name) to save the file to on the device.

Return Values

If the function succeeds, the return value is non-zero. The value is the file index (file number) of the file retrieved from the button.
Remarks

The first file on the button with the name specified in the *szBtnFileName parameter will be retrieved from the button. If there is more than one file with the same name the function Blink_SaveButtonFile can be used to save the others to the device.
Blink_SaveFileToButton
The Blink_SaveFileToButton function saves a file from the device (PC, Tablet, handheld, etc.) to the button.

UNSIGNED SHORT Blink_SaveFileToButton (

CHAR *szBtnFileName,
CHAR *szFilePath

);

Parameters
*szBtnFileName
[In] The name of the file to be saved to the button. The file name can be up to 3 characters long.
*szFilePath
[In] The path (including file name) where the file is located on the device.

Return Values

If the function succeeds, the return value is 0 (zero).

Remarks

If the button file name (*szBtnFileName parameter) already exists on the button the existing file will be overwritten, otherwise a new file will be added.
Blink_TagAtaSpec2000UserMemoryRead
The Blink_TagAtaSpec2000UserMemoryRead function reads a block of data from the User memory.

UNSIGNED SHORT Blink_TagAtaSpec2000UserMemoryRead(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

wSize
[In] The length of the block of data to be read.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.
Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data read.

Remarks

The Blink_TagAtaSpec2000FormatHighMemoryfunction is used to initially add the data to the CMB, which can then be returned in this call.

Blink_TagReadEpc
The Blink_TagReadEpc function reads a block of data from the EPC memory. EPC stands for Electronic Product Code and is designed as a universal identifier that provides a unique identity for every physical object anywhere in the world, for all time. Its structure is defined in the EPCglobal Tag Data Standard.
UNSIGNED SHORT Blink_TagReadEpc(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

wSize
[In] The length of the block of data to be read.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data read.

Remarks

The Blink_TagWriteEpc function is used to initially add the data, which can then be returned in this call.

Blink_TagWriteEpc
The Blink_TagWriteEpc function writes a block of data to the EPC memory. EPC stands for Electronic Product Code and is designed as a universal identifier that provides a unique identity for every physical object anywhere in the world, for all time. Its structure is defined in the EPCglobal Tag Data Standard.
UNSIGNED SHORT Blink_TagWriteEpc(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

BOOL bDemoMode

);

Parameters
*buffer
[In] The data to be written.

wSize
[In] The length of the block of data to be written.

bDemoMode
[In] Set FALSE for full mode or TRUE to place in demo mode. Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data written.

Remarks

The Blink_TagReadEpc function is used to read the data.

Blink_TagReadTid
The Blink_TagReadTid function reads a block of data from the TID memory. TID stands for Tag Identifier and is designed to be unalterable after it has been set.

UNSIGNED SHORT Blink_TagReadTid(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

wSize
[In] The length of the block of data to be read.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data read.

Remarks

The Blink_TagWriteTid function is used to initially add the data, which can then be returned in this call.

Blink_TagWriteTid
The Blink_TagWriteTid function writes a block of data to the TID memory. TID stands for Tag Identifier and is designed to be unalterable after it has been set.

UNSIGNED SHORT Blink_TagWriteTid(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

BOOL bDemoMode

);

Parameters
*buffer
[In] The data to be written.

wSize
[In] The length of the block of data to be written.

bDemoMode
[In] Set FALSE for full mode or TRUE to place in demo mode. Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data written.

Remarks

The Blink_TagReadTid function is used to read the data.

Blink_TagAtaSpec2000FormatHighMemory
The Blink_TagAtaSpec2000FormatHighMemory function writes the Birth, Current and Scratchpad data to the User memory. The Birth data is unalterable once it has been set.

UNSIGNED SHORT Blink_TagAtaSpec2000FormatHighMemory(

UNSIGNED SHORT wUserMemorySizeBytes,

UNSIGNED CHAR *BirthData,

UNSIGNED CHAR *CurrentData,

UNSIGNED SHORT wCurrentDataSizeBytes,

UNSIGNED CHAR *ScratchpadData,

UNSIGNED SHORT wScratchpadSizeBytes,

BOOL bDemoMode

);

Parameters
wUserMemorySizeBytes
[In] The total amount of User memory to be used for the ATA Spec 2000 data.

*BirthData
[In] The Birth data to be written.

*CurrentData
[In] The Current data to be written.

wCurrentDataSizeBytes
[In] The total amount of memory to be used for storing the Current Data. The Ata Spec 2000 recommends 2kbits (256 bytes).
*ScratchpadData
[In] The Scratchpad data to be written.

wScratchpsdSizeBytes
[In] The total amount of memory to be used for storing the Scratchpad Data. The Ata Spec 2000 recommends 3kbits (384 bytes).

bDemoMode
[In] Set FALSE for full mode or TRUE to place in demo mode. Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Return Values

If the function succeeds, the return value is 0 (zero).
Remarks

The Blink_TagAtaSpec2000BirthRead function is used to read the Birth data, Blink_TagAtaSpec2000CurrentDataRead function is used to read the Current data and Blink_TagAtaSpec2000ScratchpadRead function is used to read the Scratchpad data.

Blink_TagAtaSpec2000HistoryRecordAdd
The Blink_TagAtaSpec2000HistoryRecordAdd function adds a new History record to the User memory. A History record is designed to be unalterable after it has been set.

UNSIGNED SHORT Blink_TagAtaSpec2000HistoryRecordAdd(

UNSIGNED CHAR *buffer

);

Parameters
*buffer
[In] The data to be written.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data written.

Remarks

The Blink_TagAtaSpec2000PartHistoryRead function is used to read the data.

Blink_TagAtaSpec2000ScratchpadRecordWrite
The Blink_TagAtaSpec2000ScratchpadRecordWrite function writes the Scratchpad data record to the User memory. A Scratchpad record is designed to be altered after it has been set to allow users to make notes that may not fit the preset requirements.

UNSIGNED SHORT Blink_TagAtaSpec2000ScratchpadRecordWrite(

UNSIGNED CHAR *buffer

);

Parameters
*buffer
[In] The data to be written.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data written.

Remarks

The Blink_TagAtaSpec2000ScratchpadRead function is used to read the data.

Blink_TagAtaSpec2000CurrentDataRecordWrite
The Blink_TagAtaSpec2000CurrentDataRecordWrite function writes the Current data record to the User memory. A Current Data record is designed to be altered after it has been set to allow users to make changes to track the most current information.

UNSIGNED SHORT Blink_TagAtaSpec2000CurrentDataRecordWrite(

UNSIGNED CHAR *buffer

);

Parameters
*buffer
[In] The data to be written.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data written.

Remarks

The Blink_TagAtaSpec2000CurrentDataRead function is used to read the data.

Blink_TagAtaSpec2000BirthRead
The Blink_TagAtaSpec2000BirthRead function reads the Birth data from the User memory.

UNSIGNED SHORT Blink_TagAtaSpec2000BirthRead(

UNSIGNED CHAR *buffer,

DWORD dwSizeMax,

DWORD *dwSizeActual,

DWORD *dwClock,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

dwSizeMax
[In] The maximum length of the block of data to be read.

*dwSizeActual
[Out] The actual length of the block of data read.

*dwClock
[Out] The date and time the record was created expressed in the number of seconds elapsed since January 1, 2000 at 12am.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data read.

Remarks

The Blink_TagAtaSpec2000FormatHighMemory function is used to initially add the data, which can then be returned in this call.

Blink_TagAtaSpec2000CurrentDataRead
The Blink_TagAtaSpec2000CurrentDataRead function reads the Current data from the User memory.

UNSIGNED SHORT Blink_TagAtaSpec2000CurrentDataRead(

UNSIGNED CHAR *buffer,

DWORD dwSizeMax,

DWORD *dwSizeActual,

DWORD *dwClock,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

dwSizeMax
[In] The maximum length of the block of data to be read.

*dwSizeActual
[Out] The actual length of the block of data read.

*dwClock
[Out] The date and time the record was created expressed in the number of seconds elapsed since January 1, 2000 at 12am.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data read.

Remarks

The Blink_TagAtaSpec2000FormatHighMemory function is used to initially add the data, which can then be returned in this call.

Blink_TagAtaSpec2000ScratchpadRead
The Blink_TagAtaSpec2000ScratchpadRead function reads the Scratchpad data from the User memory.

UNSIGNED SHORT Blink_TagAtaSpec2000ScratchpadRead(

UNSIGNED CHAR *buffer,

DWORD dwSizeMax,

DWORD *dwSizeActual,

DWORD *dwClock,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

dwSizeMax
[In] The maximum length of the block of data to be read.

*dwSizeActual
[Out] The actual length of the block of data read.

*dwClock
[Out] The date and time the record was created expressed in the number of seconds elapsed since January 1, 2000 at 12am.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data read.

Remarks

The Blink_TagAtaSpec2000FormatHighMemory function is used to initially add the data, which can then be returned in this call.

Blink_TagAtaSpec2000PartHistoryRecordCount

The Blink_TagAtaSpec2000PartHistoryRecordCount function returns the number of part history records in the User memory.

UNSIGNED SHORT Blink_TagAtaSpec2000PartHistoryRecordCount(void);

Parameters
None.
Return Values

The return value indicates the number of part history records in the User memory.

Remarks

None.

Blink_TagAtaSpec2000PartHistoryRead
The Blink_TagAtaSpec2000PartHistoryRead function reads the specified Part History data from the User memory.

UNSIGNED SHORT Blink_TagAtaSpec2000PartHistoryRead(

UNSIGNED CHAR *buffer,

DWORD dwSizeMax,

DWORD *dwSizeActual,

DWORD *dwClock,

UNSIGNED CHAR *pbyMode,

INT nRecordTypeNumber
);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

dwSizeMax
[In] The maximum length of the block of data to be read.

*dwSizeActual
[Out] The actual length of the block of data read.

*dwClock
[Out] The date and time the record was created expressed in the number of seconds elapsed since January 1, 2000 at 12am.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

nRecordTypeNumber
[In] The part history record number.

Return Values

If the function succeeds, the return value is non-zero. The value returned is the length of data read.

Remarks

The Blink_TagAtaSpec2000HistoryRecordAdd function is used to initially add the data, which can then be returned in this call. It is recommended that the Blink_TagAtaSpec2000PartHistoryRecordCount call be used to retrieve the total number of part history records.
Blink_TagAtaSpec2000RecordCount

The Blink_TagAtaSpec2000RecordCount function returns the total number of records in the User memory.

UNSIGNED SHORT Blink_TagAtaSpec2000RecordCount(void);

Parameters
None.
Return Values

The return value indicates the number of records in the User memory.

Remarks

None.

Blink_GetNumSysFiles

The Blink_GetNumSysFiles function returns the total number of system files on the button.

UNSIGNED SHORT Blink_GetNumSysFiles(void);

Parameters
None.
Return Values

The return value indicates the number of system files on the button.

Remarks

None.

Blink_TagAtaSpec2000Mode

The Blink_TagAtaSpec2000Mode function returns the mode that the ATA Spec 2000 files were added to the button.

UNSIGNED SHORT Blink_TagAtaSpec2000Mode(void);

Parameters
None.
Return Values

The return value indicates the mode that the ATA Spec 2000 files are on the button.

The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Remarks

None.

Blink_TagAtaSpec2000ModeAvailable

The Blink_TagAtaSpec2000ModeAvailable function returns the mode for in which the ATA Spec 2000 files can be add to the button.

UNSIGNED SHORT Blink_TagAtaSpec2000ModeAvailable(void);

Parameters
None.
Return Values

The return value indicates the mode that the ATA Spec 2000 files can be added to the button. If the mode returned is 0 (zero) it can be used for both full and demo modes, but if the mode returned is 1 (one) it can only be used for demo purposes. Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Remarks

None.

Blink_TagAtaSpec2000Formatted
The Blink_TagAtaSpec2000Formatted function returns the status of ATA Spec 2000 formatting.

UNSIGNED SHORT Blink_TagAtaSpec2000Formatted(

UNSIGNED CHAR *pbyMode
);

Parameters
*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Return Values

The return value is 0 (zero) if not formatted and 1 (one) if it has been formatted. The pbyMode value returned will indicate the mode the format was added.

Remarks

The Blink_TagAtaSpec2000HistoryRecordAdd function is used to initially add the data.

Blink_TagKill
The Blink_TagKill function permanently renders the tag inoperable for all future calls.

UNSIGNED SHORT Blink_TagKill(

UNSIGNED LONG dwPassword
);

Parameters
dwPassword
[In] Password to kill the CMB. The password is the CMB Run Number (Blink_BtnGetRunNumber) Exclusive Or (XOR) with 0x2345518.

Return Values

If the function succeeds, the return value is 1.

Remarks

The Blink_TagKill function is used to permanently render the CMB inoperable. A successful call to the Blink_BtnWrite function, while touching the button (Blink_BtnContact), is required to update the button.

Appendix A. Codes
Button types

kButton_ReadAll

0

kButton_128

1

kButton_256

2

kButton_2K

4
kButton_8K

8
kButton_4K

16
kButton_32K

32
kButton_64K

64
File Access

access_locked

1
access_readonly

2
Error codes

kBlinkErr_None

0

kBlinkErr_Read

1
kBlinkErr_ReadOnly

2
kBlinkErr_Write

4
kBlinkErr_Locked

8
kBlinkErr_WrongButton

16

kBlinkErr_Checksum

32
kBlinkErr_BtnType

128

kBlinkErr_Timeout

256

kBlinkErr_VendorCodeRequired

300
kBlinkErr_VendorCodeNotRequired

301
kBlinkErr_VendorCodeDoesNotMatch

302
kBlinkErr_Contact

1024
kBlinkErr_Buffer

2048

kBlinkErr_Kill

4096

Feedback codes

feedback_progressread

PB
feedback_read

PR
feedback_total

PT

feedback_write

PW
feedback_progresswrite

WB
Appendix B. Functions

General Functions

unsigned short Blink_FeatureSet(unsigned char byMajor, unsigned char byMinor);

unsigned short Blink_GetVersion(unsigned char *pbyMajor, unsigned char *pbyMinor);

unsigned short Blink_GetBlinkVersion(unsigned char *pbyMajor, unsigned char *pbyMinor);

unsigned short Blink_On(short nPort, unsigned long baudrate, short nParam);

unsigned short Blink_SetFastMode(unsigned short nMode);

unsigned short Blink_Off(void);

unsigned short Blink_Contact(unsigned char *pbyContact);

Int16 Blink_Count(void);

Int16 Blink_SetLink(byte byLinkNumber);

unsigned short Blink_LinkGetSerialNum(int *nSerial);

unsigned short Blink_LinkGetSerialNumber(byte byLinkNumber, char *SerialBuffer);
unsigned short Blink_BtnGetReadKind(void);

unsigned short Blink_BtnGetAttributes(void);

unsigned short Blink_BtnGetFreeMem(void);
unsigned short Blink_BtnGetLotNumber(word *wLotNumber);

unsigned short Blink_BtnGetRunNumber(dword *dwRunNumber);
unsigned short Blink_BtnGetSerialNum(byte *buffer);

unsigned short Blink_BtnGetSerialNumStr(char *pszSerialStr);

unsigned short Blink_BtnRead(short bRescue, char *szPassword, short nBtnReadKind);

unsigned short Blink_BtnUndo(void);

unsigned short Blink_BtnWrite(void);

unsigned short Blink_BtnGetNumFiles(void);

unsigned short Blink_BtnGetFileInfo(short nFileNumber, char *szBtnFileName, unsigned short *wSize);

unsigned short Blink_BtnGetCreatorStr(char *pszCreator);

unsigned short Blink_BtnSetCreatorStr(char *pszCreator);

unsigned short Blink_BtnLock(char *szNewCreator);

unsigned short Blink_BtnUnlock(void);

unsigned short Blink_SetVendorCode(word szVendor);

unsigned short Blink_ResetVendorCode(void);

2000, XP Only Functions

unsigned short RegisterProgressHWND(HWND hHWND);

unsigned short Blink_GetDLLVersion(unsigned char *pbyMajor, unsigned char *pbyMinor);

unsigned short Blink_GetDLLFullVersion(byte *pbyMajor, byte *pbyMinor, unsigned short *pdwExtended);

CE Only Functions

unsigned short Blink_RegisterFeedbackHWND(HWND hHWND);

unsigned short Blink_SetProgressMode(short nMode);
unsigned short Blink_DLLVersion(unsigned char *pbyMajor, unsigned char *pbyMinor);

unsigned short Blink_GetDLLVersion(byte *pbyMajor, byte *pbyMinor, unsigned short *pdwExtended);

File Functions

unsigned short Blink_BtnAddFile(char *szBtnFileName, word wSize, unsigned short wFillChar);

unsigned short Blink_BtnDeleteFile(unsigned short nFileNumber);

unsigned short Blink_BtnSelectFile(short nFileNumber, unsigned short wFilePos);

unsigned short Blink_BtnFileSetPos(unsigned short wFilePos);

unsigned short Blink_BtnFileGetPos(word *wFilePos);

unsigned short Blink_BtnFileReadBlk(unsigned char *buffer, unsigned short wSize);

unsigned short Blink_BtnFileWriteBlk(unsigned char *buffer, unsigned short wSize);

unsigned short Blink_BtnFileReadStr(unsigned char *string, short nMaxLen);

unsigned short Blink_BtnFileWriteStr(unsigned char *string);

unsigned short Blink_BtnFileAppendStr(char *string);

unsigned short Blink_BtnFileReallocate(short nFileNumber, word wNewSize, char cFillChar);

unsigned short Blink_SaveButtonFile(short nFileNumber, char *szFilePath);

unsigned short Blink_SaveButtonFileByName(char *szBtnFileName, char *szFilePath);

unsigned short Blink_SaveFileToButton(char *szBtnFileName, char *szFilePath);

ATA Spec 2000 Tag Functions

unsigned short Blink_TagAtaSpec2000UserMemoryRead(unsigned char *buffer, unsigned short wSize, unsigned char *pbyMode);

unsigned short Blink_TagAtaSpec2000ReadEpc(unsigned char *buffer, unsigned short wSize, unsigned char *pbyMode);

unsigned short Blink_TagAtaSpec2000WriteEpc(unsigned char *buffer, unsigned short wSize, bool bDemoMode);
unsigned short Blink_TagAtaSpec2000ReadTid(unsigned char *buffer, unsigned short wSize, unsigned char *pbyMode);

unsigned short Blink_TagAtaSpec2000WriteTid(unsigned char *buffer, unsigned short wSize, bool bDemoMode);

unsigned short Blink_TagAtaSpec2000FormatHighMemory(unsigned short wUserMemorySizeBytes, unsigned char *BirthData, unsigned char *CurrentData, unsigned short wCurrentDataSizeBytes, unsigned char *ScratchpadData, unsigned short wScratchpadSizeBytes, bool bDemoMode);

unsigned short Blink_TagAtaSpec2000HistoryRecordAdd(unsigned char *buffer);

unsigned short Blink_TagAtaSpec2000ScratchpadRecordWrite(unsigned char *buffer);

unsigned short Blink_TagAtaSpec2000CurrentDataRecordWrite(unsigned char *buffer);

unsigned short Blink_TagAtaSpec2000BirthRead(unsigned char *buffer, DWORD dwSizeMax, DWORD dwSizeActual, DWORD dwClock, unsigned char *pbyMode);

unsigned short Blink_TagAtaSpec2000CurrentDataRead(unsigned char *buffer, DWORD dwSizeMax, DWORD dwSizeActual, DWORD dwClock, unsigned char *pbyMode);

unsigned short Blink_TagAtaSpec2000ScratchpadRead(unsigned char *buffer, DWORD dwSizeMax, DWORD dwSizeActual, DWORD dwClock, unsigned char *pbyMode);

unsigned short Blink_TagAtaSpec2000PartHistoryRecordCount(void);

unsigned short Blink_GetNumSysFiles(void);

unsigned short Blink_TagAtaSpec2000Mode(void);

unsigned short Blink_TagAtaSpec2000ModeAvailable(void);

unsigned short Blink_TagAtaSpec2000Formatted(unsigned char *pbyMode);

unsigned short Blink_TagKill(unsigned long dwPassword);

Appendix C. Header Files

Blink32.h

unsigned short BLINK32_API Blink_GetDLLVersion(unsigned char *pbyMajor, unsigned char *pbyMinor);

unsigned short BLINK32_API Blink_GetDLLFullVersion(unsigned char *pbyMajor, unsigned char *pbyMinor, unsigned short *pwExt);

unsigned short BLINK32_API Blink_GetVersion(unsigned char *pbyMajor, unsigned char *pbyMinor);

unsigned short BLINK32_API Blink_FeatureSet(unsigned char byMajor, unsigned char byMinor);

unsigned short BLINK32_API Blink_On(short nPort, unsigned long dwBaudRate, short nParam);

unsigned short BLINK32_API Blink_Off(void);

unsigned short BLINK32_API Blink_Contact(unsigned char *pbyContact);
Int16 Blink_Count(void);

Int16 Blink_SetLink(byte byLinkNumber);

unsigned short Blink_LinkGetSerialNum(int *nSerial);

unsigned short Blink_LinkGetSerialNumber(byte byLinkNumber, char *SerialBuffer);

unsigned short BLINK32_API Blink_BtnRead(short bRescue, char *szPassWord, unsigned short nBtnReadKind);

unsigned short BLINK32_API Blink_BtnWrite(void);
unsigned short BLINK32_API Blink_SetFastMode(unsigned short nMode);
unsigned short BLINK32_API Blink_BtnGetNumFiles(void);

unsigned short BLINK32_API Blink_BtnGetFileInfo(short nFileNumber, char *szBtnFileName, unsigned short *wSize);

unsigned short BLINK32_API Blink_BtnSelectFile(short nFileNumber, unsigned short wFilePos);

unsigned short BLINK32_API Blink_BtnFileReadBlk(unsigned char *buffer, unsigned short wSize);

unsigned short BLINK32_API Blink_BtnFileWriteBlk(unsigned char *buffer, unsigned short wSize);

unsigned short BLINK32_API Blink_BtnFileSetPos(unsigned short wFilePos);

unsigned short BLINK32_API Blink_BtnGetCreatorStr (char *szCreator);

unsigned short BLINK32_API Blink_BtnSetCreatorStr (char *szCreator);

unsigned short BLINK32_API Blink_BtnGetLotNumber (word *wLotNumber);

unsigned short BLINK32_API Blink_BtnGetRunNumber (dword *dwRunNumber);

unsigned short BLINK32_API Blink_BtnGetSerialNum (byte *buffer);

unsigned short BLINK32_API Blink_BtnGetSerialNumStr (char *szSerial);

unsigned short BLINK32_API Blink_BtnGetReadKind (void);

unsigned short BLINK32_API Blink_BtnGetAttributes (void);

unsigned short BLINK32_API Blink_BtnGetContentSize (void);

unsigned short BLINK32_API Blink_BtnReadContent (word wBtnAddress, byte *buffer, word wSize);

unsigned short BLINK32_API Blink_BtnWriteContent (word wBtnAddress, byte *buffer, word wSize);

unsigned short BLINK32_API Blink_BtnLock (char *szNewCreator);

unsigned short BLINK32_API Blink_BtnUnlock (void);

unsigned short BLINK32_API Blink_BtnAddFile (char *szBtnFileName, word wSize, unsigned short wFillChar);

unsigned short BLINK32_API Blink_BtnDeleteFile (unsigned short nFileNumber);

unsigned short BLINK32_API Blink_BtnFileAppendStr (char *string);

unsigned short BLINK32_API Blink_BtnFileGetPos (word *wFilePos);

unsigned short BLINK32_API Blink_BtnFileReadStr (char *string, short nMaxLen);

unsigned short BLINK32_API Blink_BtnFileReallocate (short nFileNumber, word wNewSize, char cFillChar);

unsigned short BLINK32_API Blink_BtnFileWriteStr (char *string);

unsigned short BLINK32_API Blink_BtnGetFreeMem(void);

unsigned short BLINK32_API Blink_BtnUndo(void);

unsigned short BLINK32_API RegisterProgressHWND(HWND hWnd);

unsigned short BLINK32_API RegisterDebugHWND(HWND hWnd);

unsigned short BLINK32_API SetProgressMode(short nMode);

unsigned short BLINK32_API Blink_SaveButtonFileByName(LPTSTR szBtnFileName, LPTSTR szFilePath);

unsigned short BLINK32_API Blink_SaveFileToButton(LPTSTR szBtnFileName, LPTSTR szFilePath);

unsigned short BLINK32_API Blink_SaveButtonFile(short nFileNumber, LPTSTR szFilePath);

unsigned short BLINK32_API Blink_TagReadBtnFile(char *szBtnFileName, unsigned char *buffer , unsigned short wSize);
unsigned short BLINK32_API Blink_TagReadBtnSysFile(char *szBtnFileName, unsigned char *buffer , unsigned short wSize);

unsigned short BLINK32_API Blink_TagWriteBtnFile(char *szBtnFileName, unsigned char *buffer , unsigned short wSize);

unsigned short BLINK32_API Blink_TagWriteBtnSysFile(char *szBtnFileName, unsigned char *buffer , unsigned short wSize);

unsigned short BLINK32_API Blink_TagAtaSpec2000UserMemoryRead(unsigned char *buffer , unsigned short wSize, unsigned char *pbyMode);

unsigned short BLINK32_API Blink_TagReadEPC(unsigned char *buffer , unsigned short wSize, unsigned char *pbyMode);

unsigned short BLINK32_API Blink_TagWriteEPC(unsigned char *buffer , unsigned short wSize, bool bDemoMode);

unsigned short BLINK32_API Blink_TagReadTID(unsigned char *buffer , unsigned short wSize, unsigned char *pbyMode);

unsigned short BLINK32_API Blink_TagWriteTID(unsigned char *buffer , unsigned short wSize, bool bDemoMode);

unsigned short BLINK32_API Blink_TagAtaSpec2000FormatHighMemory(unsigned short wUserMemorySize, unsigned char *BirthData, unsigned char *CurrentData , unsigned short wCurrentDataSizeBytes, unsigned char *ScratchpadData, unsigned short wScratchpadSizeBytes, bool bDemoMode);
unsigned short BLINK32_API Blink_TagAtaSpec2000HistoryRecordAdd(unsigned char *buffer);
unsigned short BLINK32_API Blink_TagAtaSpec2000ScratchpadRecordWrite(unsigned char *buffer);
unsigned short BLINK32_API Blink_TagAtaSpec2000CurrentDataRecordWrite(unsigned char *buffer);
unsigned short BLINK32_API Blink_TagAtaSpec2000BirthRead (unsigned char *buffer, dword dwSizeMax, dword *dwSizeActual, dword *dwClock, unsigned char *pbyMode);

unsigned short BLINK32_API Blink_TagAtaSpec2000CurrentDataRead (unsigned char *buffer, dword dwSizeMax, dword *dwSizeActual, dword *dwClock, unsigned char *pbyMode);

unsigned short BLINK32_API Blink_TagAtaSpec2000ScratchpadRead (unsigned char *buffer, dword dwSizeMax, dword *dwSizeActual, dword *dwClock, unsigned char *pbyMode);
unsigned short BLINK32_API Blink_TagAtaSpec2000PartHistoryRecordCount(void);
unsigned short BLINK32_API Blink_TagAtaSpec2000PartHistoryRead (unsigned char *buffer, dword dwSizeMax, dword *dwSizeActual, dword *dwClock, unsigned char *pbyMode, int nRecordTypeNumber);
unsigned short BLINK32_API Blink_TagAtaSpec2000RecordCount(void);
unsigned short BLINK32_API Blink_GetNumSysFiles(void);
unsigned short BLINK32_API Blink_TagAtaSpec2000Mode(void);
unsigned short BLINK32_API Blink_TagAtaSpec2000ModeAvailable(void);
unsigned short BLINK32_API Blink_TagAtaSpec2000Formatted(unsigned char *pbyMode);

unsigned short BLINK32_API Blink_SetVendorCode (word szVendor);

unsigned short BLINK32_API Blink_ResetVendorCode ();

blinkce.h

unsigned short BLINKCE_API Blink_SetProgressMode(short nMode);

unsigned short BLINKCE_API Blink_RegisterProgressHWND(HWND hWnd);

unsigned short BLINKCE_API Blink_GetDLLVersion(unsigned char *pbyMajor, unsigned char *pbyMinor, unsigned long *pdwExtended);

unsigned short BLINKCE_API Blink_GetBlinkVersion(unsigned char *pbyMajor, unsigned char *pbyMinor);

unsigned short BLINKCE_API Blink_GetVersion(unsigned char *pbyMajor, unsigned char *pbyMinor);

unsigned short BLINKCE_API Blink_DLLVersion(unsigned char *pbyMajor, unsigned char *pbyMinor);

unsigned short BLINKCE_API Blink_FeatureSet(unsigned char byMajor, unsigned char byMinor);

unsigned short BLINKCE_API Blink_On(short nPort, unsigned long baudrate, short nParam);
unsigned short BLINKCE _API Blink_SetFastMode(unsigned short nMode);
unsigned short BLINKCE_API Blink_Contact(unsigned char *pbyContact);

unsigned short BLINKCE_API Blink_Off(void);

unsigned short BLINKCE_API Blink_BtnRead(short bRescue, LPTSTR szPassword, unsigned short wBtnReadKind);

unsigned short BLINKCE_API Blink_BtnGetNumFiles(short *wFiles);

unsigned short BLINKCE_API Blink_BtnGetFileInfo(short nFileNumber, LPTSTR szBtnFileName, unsigned short *wSize);

unsigned short BLINKCE_API Blink_BtnSelectFile(short nFileNumber, unsigned short wFilePos);

unsigned short BLINKCE_API Blink_SetPreference(unsigned short wPrefID, unsigned char wPrefValue);

unsigned short BLINKCE_API Blink_BtnFileReadBlk(unsigned char *buffer, unsigned short wSize);

unsigned short BLINKCE_API Blink_BtnFileWriteBlk(unsigned char *buffer, unsigned short wSize);

unsigned short BLINKCE_API Blink_BtnFileSetPos(unsigned short wFilePos);

unsigned short BLINKCE_API Blink_BtnGetCreatorStr (LPTSTR szCreator);

unsigned short BLINKCE_API Blink_BtnSetCreatorStr (LPTSTR szCreator);

unsigned short BLINKCE_API Blink_BtnGetLotNumber (word *wLotNumber);

unsigned short BLINKCE_API Blink_BtnGetRunNumber (dword *dwRunNumber);

unsigned short BLINKCE_API Blink_BtnGetSerialNum (byte *buffer);

unsigned short BLINKCE_API Blink_BtnGetSerialNumStr (LPTSTR szSerial);

unsigned short BLINKCE_API Blink_BtnGetReadKind (void);

unsigned short BLINKCE_API Blink_BtnGetAttributes (void);

unsigned short BLINKCE_API Blink_BtnLock (LPTSTR szNewCreator);

unsigned short BLINKCE_API Blink_BtnAddFile (LPTSTR szBtnFileName, word wSize, unsigned short wFillChar);

unsigned short BLINKCE_API Blink_BtnDeleteFile (unsigned short nFileNumber);

unsigned short BLINKCE_API Blink_BtnFileAppendStr (LPTSTR string);

unsigned short BLINKCE_API Blink_BtnFileGetPos (unsigned short *wFilePos);

unsigned short BLINKCE_API Blink_BtnFileReadStr (LPTSTR string, short nMaxLen);

unsigned short BLINKCE_API Blink_BtnFileReallocate (short nFileNumber, word wNewSize, unsigned short cFillChar);

unsigned short BLINKCE_API Blink_BtnFileWriteStr (LPTSTR string);

unsigned short BLINKCE_API Blink_BtnUnlock (void);

unsigned short BLINKCE_API Blink_BtnWrite(void);

unsigned short BLINKCE_API Blink_BtnGetFreeMem(void);

unsigned short BLINKCE_API Blink_BtnUndo(void);

unsigned short BLINKCE_API Blink_SaveButtonFileByName(LPTSTR szBtnFileName, LPTSTR szFilePath);

unsigned short BLINKCE_API Blink_SaveFileToButton(LPTSTR szBtnFileName, LPTSTR szFilePath);

unsigned short BLINKCE_API Blink_SaveButtonFile(short nFileNumber, LPTSTR szFilePath);

unsigned short BLINKCE _API Blink_TagReadBtnFile(char *szBtnFileName, unsigned char *buffer , unsigned short wSize);
unsigned short BLINKCE _API Blink_TagReadBtnSysFile(char *szBtnFileName, unsigned char *buffer , unsigned short wSize);

unsigned short BLINKCE _API Blink_TagWriteBtnFile(char *szBtnFileName, unsigned char *buffer , unsigned short wSize);

unsigned short BLINKCE _API Blink_TagWriteBtnSysFile(char *szBtnFileName, unsigned char *buffer , unsigned short wSize);

unsigned short BLINKCE _API Blink_TagAtaSpec2000UserMemoryRead(unsigned char *buffer , unsigned short wSize, unsigned char *pbyMode);

unsigned short BLINKCE _API Blink_TagReadEPC(unsigned char *buffer , unsigned short wSize, unsigned char *pbyMode);

unsigned short BLINKCE _API Blink_TagWriteEPC(unsigned char *buffer , unsigned short wSize, bool bDemoMode);

unsigned short BLINKCE _API Blink_TagReadTID(unsigned char *buffer , unsigned short wSize, unsigned char *pbyMode);

unsigned short BLINKCE _API Blink_TagWriteTID(unsigned char *buffer , unsigned short wSize, bool bDemoMode);

unsigned short BLINKCE _API Blink_TagAtaSpec2000FormatHighMemory(unsigned short wUserMemorySize, unsigned char *BirthData, unsigned char *CurrentData , unsigned short wCurrentDataSizeBytes, unsigned char *ScratchpadData, unsigned short wScratchpadSizeBytes, bool bDemoMode);
unsigned short BLINKCE _API Blink_TagAtaSpec2000HistoryRecordAdd(unsigned char *buffer);
unsigned short BLINKCE _API Blink_TagAtaSpec2000ScratchpadRecordWrite(unsigned char *buffer);
unsigned short BLINKCE _API Blink_TagAtaSpec2000CurrentDataRecordWrite(unsigned char *buffer);

unsigned short BLINKCE _API Blink_TagAtaSpec2000BirthRead (unsigned char *buffer, dword dwSizeMax, dword *dwSizeActual, dword *dwClock, unsigned char *pbyMode);

unsigned short BLINKCE _API Blink_TagAtaSpec2000CurrentDataRead (unsigned char *buffer, dword dwSizeMax, dword *dwSizeActual, dword *dwClock, unsigned char *pbyMode);

unsigned short BLINKCE _API Blink_TagAtaSpec2000ScratchpadRead (unsigned char *buffer, dword dwSizeMax, dword *dwSizeActual, dword *dwClock, unsigned char *pbyMode);
unsigned short BLINKCE _API Blink_TagAtaSpec2000PartHistoryRecordCount(void);
unsigned short BLINKCE _API Blink_TagAtaSpec2000PartHistoryRead (unsigned char *buffer, dword dwSizeMax, dword *dwSizeActual, dword *dwClock, unsigned char *pbyMode, int nRecordTypeNumber);
unsigned short BLINKCE _API Blink_TagAtaSpec2000RecordCount(void);
unsigned short BLINKCE _API Blink_GetNumSysFiles(void);
unsigned short BLINKCE _API Blink_TagAtaSpec2000Mode(void);
unsigned short BLINKCE _API Blink_TagAtaSpec2000ModeAvailable(void);
unsigned short BLINKCE _API Blink_TagAtaSpec2000Formatted(unsigned char *pbyMode);

unsigned short BLINKCE_API Blink_SetVendorCode (word szVendor);

unsigned short BLINKCE_API Blink_ResetVendorCode ();

ButtonLink APIs.doc
 Page 2 of 44

_1284459694.doc

MacSema, Inc.

62971 Plateau Drive (Suite 400 (Bend, Oregon 97701 USA (Phone (541) 389-1122 (Fax (541) 389-1888

(� HYPERLINK "mailto:techsupport@macsema.com" ��techsupport@macsema.com� (� HYPERLINK "http://www.macsema.com" ��www.macsema.com�

