
[image: image1.wmf]

MacSema, Inc.

62971 Plateau Drive

·

 Suite 400

·

 Bend, Oregon 97701 USA

·

Phone

 (541) 389

-

1122

·

 Fax

 (541) 389

-

1888

·

techsupport@macsema.com

·

www.macsema.com

Mega ButtonLink SDK

MacSema, Inc.

This documentation refers to:

mblink32.dll
version 5.1.1041
mblink64.dll
version 5.1.1041
mblinkce.dll
version 5.1.1041
Supported Platforms (mblink32.dll):

Windows 2000

Windows XP

Windows VISTA
Windows 7

Supported Platforms (mblink64.dll):

Windows 7

Supported Platforms (mblinkce.dll):

Windows CE

The MegaButton File System XE "MegaButton File System" (MBFS XE "MBFS" \t "See MegaButton File System")

MBFS is designed with minimal overhead and maximum flexibility in mind, to accomodate a variety of large-capacity contact memory applications. It is a hierarchial file system, capable of containing nested files and directories, similar to other modern file systems (NTFS, FAT32, etc).

Each file and directory can have a name of up to 255 characters in length, which can consist of any combination of alphanumeric/symbol characters, with the exception of the following symbols:

\ / : * ? " < > |

(Symbol names: backslash, forwardslash, colon, asterix, question mark, quotation mark, less than, greater than, pipe)

Each file and directory can also have "Meta Data" associated with it. Meta Data is extra data which describes a file, such as a MIME type, a user name, etc. See the section "Meta Data" for more information.

Files and Directories with the MegaButton API

The MegaButton API uses the backslash character for path specification. The "root" directory of the MegaButton is represented by a single backslash. This is comparable to the C:\ directory on a PC. For example, the full path for a file called "inventory.xml" located in a directory called "data" would be:

\data\inventory.xml

Many of the functions in the API have a "by name" version, where a path to a file or directory is specified, and a "by number" version, where an index is specified in place of a name. The API utilizes the concept of a "current working directory" (CWD) for both sets of functions.

The CWD concept is the same as under MS-DOS, Unix, etc. When a MegaButton is first opened, the CWD is always set to the root directory (\). The command mblink_ChDir is used to change the current working directory, and is similar to the cd command under MS-DOS and Unix.

To illustrate, there are multiple ways to copy the file \data\inventory.xml from the button on to the PC:

Method 1.
1. mblink_ChDir "data"
The CWD is currently \, so mblink_ChDir searches \ for a directory called "data", and then changes the CWD to that directory.

2. mblink_GetFile "inventory.xml" "c:\inventory.xml"
The CWD is currently \data, so mblink_GetFile searches \data for a file called "inventory.xml" and then copies that file to the PC as "c:\inventory.xml".

Method 2.

1. mblink_GetFile "\data\inventory.xml" "c:\inventory.xml"
In this case, the CWD doesn't matter; we've specified an absolute path to the file. mblink_GetFile searches the directory "\data" for a file called "inventory.xml" and copies the file on to the PC as "c:\inventory.xml".

Which method is most appropriate depends on the type of application being developed. An application such as MacSema's ButtonLink Frontend, which allows users to browse the contents of a button, might use Method 1. An application which is only interested in getting the file, and knows that it will either be in \data or won't be on the button at all, might use Method 2.

Getting Started

Only one Mega ButtonLink can be attached to the system at a time. Only one application can utilize mblink32 functions at a time.

mblink_On activates the Mega ButtonLink and should be called when the application starts. Call mblink_Off when the application exits.

mblink_Contact is used to determine if there is a MegaButton present in the link. After calling mblink_Contact, the value of pbyContact is one if there is a button present, zero otherwise.

mblink_ButtonInfo can be used to determine information about the button (such as capacity).

To start working with a button, call mblink_Open. This reads the file structures of the button and allows non-general button functions to be performed (file functions, directory functions, etc). When the application is finished working with a button, it should call mblink_Close.

String Allocation

Any parameter prefixed with "psz" is a pointer to a null-terminated string.

Visual Basic's String type can be used, however it must first be initialized by assigning it to the return value of the String() function. For example, if 13 bytes are required, use String(13,0). If 255 bytes are required, use String(255,0).

Delphi programmers can use the string type by putting the allocated size in brackets. For example, if 13 bytes are required, string[13] would be used. An additional step is required for Delphi. Pass the data to the function StrPas, the return value can then be assigned to a normal string and used.

C/C++ programmers can use char[x], where X is the number of bytes required.

C# programmers should initialize their strings with the string constructor. Example:

string sFileName = new string(' ',255);

Directories XE "Directories"
The file system on the MegaButton supports nested directories. The default directory after calling mblink_Open is always the root directory (represented by a single backslash). File and directory functions work on files in the "current working directory". The current directory can be changed by calling mblink_ChDir and specifying a path to the desired directory.

For example, if there is a directory called "New Folder" in the root directory of the button, passing "\New Folder" to mblink_ChDir would change the current directory to that. If the backslash isn't specified at the start of the path, ChDir will assume that the path is relative to the current directory. Multiple directories can be specified, for example if there is a directory called "Pictures" inside "New Folder", passing "\New Folder\Pictures" would change the current directory to that. Passing "Pictures" while the current directory is already "New Folder" would also have the same result.

Listing Files in a Directory

To find out information about files in the current directory, first call mblink_GetNumFiles. The value passed back in wCount indicates the number of files in the current directory. To get filenames, call mblink_GetFileName, and pass the file index (from 1 to the number of files). To get file size, call mblink_GetFileSizeByNumber.

Subdirectory information is obtained using mblink_GetNumDirs and mblink_GetDirName.

Timestamps XE "Timestamps"
Files under MBFS are timestamped for creation and modification using Universal Time, or UTC. UTC is basically the same as GMT (Greenwich Mean Time). Accuracy of the timestamp is dependant on the clock of the PC which created the file being accurate, and being set to the correct local time zone. When a file is created on a button, the timestamp is generated based on the local PC time, with the local PC's timezone factored in to create the UTC timestamp.

Software is available for all modern operating systems which keeps the PC clock in sync with time servers located at various organizations and institutions, using NTP (Network Time Protocol). More information about NTP can be found at http://www.ntp.org/
The method MBFS uses for storing timestamps is not subject to any rollover problems (eg. the Y2K bug).

Passwords XE "Passwords"
Passwords are provided as a means of restricting access and preventing accidental or intentional harmful actions on the part of the user/application. If it is critical that your data not be read by a third party, you should consider using the encryption routines. For maximum protection, read/write protect your files and encrypt them, using different passwords for each level of protection.

Read and write passwords can be used for both files and directories. If a password is set for a directory, it will affect all of that directory's subdirectories and files.

Read passwords also override write access. For example, if a directory is read protected, unless the proper password is supplied, read and write operations will fail on that directory and all of its subdirs/files.

For password commands, specify the full or relative path to the target directory or file.

After setting passwords, the change does not take effect until the next time the button is closed (mblink_Close).

After successfully specifying read or write passwords, the files and/or directories affected remain accessible until mblink_Close. The file information in the button is not modified by this action, so it is not possible for a button's files or directories to be accidently left unlocked.

If a read password is specified to mblink_GetFileEx, the file is only unprotected for the duration of the copy, and will return to being read protected as soon as mblink_GetFileEx finishes.

If a read or write password is passed to mblink_FileOpenBlkEx the password(s) only remain in effect until the file is closed.

Feedback

Feedback is sent via the WM_SETTEXT message. To specify which window procedure should receive this message, call mblink_RegisterFeedbackHWND and pass the window's HWND. For example, under VB a text edit can be used, pass editname.handle to mblink_RegisterFeedbackHWND and feedback messages will trigger the OnChange handler of the edit allowing them to be processed.

Feedback messages are in ascii, two parts, separated by a space character. The first part is a numeric feedback code, the second part is optional data.

Breaking Contact During Writes

If the user breaks contact with the MegaButton during a file write operation, the file being written will be incomplete, and automatically flagged as being "partial". If mblink_GetFile is called on a partial file, it will result in kMblinkErr_FilePartial. In order to retrieve a partial file, the function mblink_RecoverFile must be called. After calling mblink_RecoverFile, the file is made temporarily available (until the next time mblink_Close is called).

The file size of the recovered file will be correct, however the data inside the file will be a mix of the correct file data, and whatever old data was stored in the area allocated to the file.

In the case that mblink_close is called before mblink_FileClose is called for an open file (such as a Lost Contact situation), mblink_FileClose is automatically called for each open file after mblink_close is called. This has the effect of clearing the password buffer, but not clearing the open mark on the filesystem record. Any file which is not closed prior to mblink_close will be marked as Partial the next time the button is opened.

Damaged Files XE "Damaged Files"
A result of kMblinkErr_FileDamaged from a call to mblink_GetFile indicates that damage was detected in the content of the file.

Damage occurs on buttons which have been used excessively. Flash memory has a limited number of write cycles. As individual areas of the memory go bad, they are automatically flagged by MBFS and avoided.

Unfortunatly, not all bad areas of memory can be detected at write time. In some cases, when an area of memory goes bad, it begins to exhibit single-bit errors in one or more of its bytes. These errors are detected automatically the next time the file containing them is read.

If the application requires that buttons be used past the end of their life cycle (the point where memory begins to go bad), MacSema recommends the following sequence to ensure data integrity:

1. Write file to the megabutton

2. Pause for two seconds

3. Read file back from the megabutton (do not overwrite the original file!)

4. Compare the file to the original

5. If the files do not match, delete the file from the megabutton and re-add the file

6. Repeat process until files match

As soon as damage is detected, the bad pages are marked as such and will not be used the next time the file is added to the button.

Meta Data XE "Meta Data"
Meta Data is data associated with files and directories. It is inteded for short, textual data. Each meta data field is referenced by an ID number, which ranges from zero to 32767.

1 thru 8000

application-readable, defined by MacSema

8001 thru 16000
application read/writeable, defined by MacSema

16001 thru 32767
application read/writeable, defined by application

Meta data is used by the filesystem for storing things such as file/directory names, path information, cryptographic method, etc.

MacSema has made the upper half of the meta data ID range available for use by applications. It is up to the application programmer to decide which numbers (in the range 16001 thru 32767) to use for various purposes. For example, the application could use meta data to store the User ID of the user who created a particular file.

Meta data fields currently have a soft limit of 2048 characters, however MacSema recommends that they be used for shorter information, in the 80 to 150 character range, for performance reasons. Note: If the button is low on free memory, the application should be aware that meta data requests may be denied with a kMblinkErr_FSFull error. If this occurs on a button which has free space available, the application can try running a level 1 maintenance (mblink_Maintenance(1)) and then retry the meta data request.

Meta data fields can contain any character value from 1 thru 255 (The data is null-terminated, so NULL values cannot be contained in meta data fields).

See Appendix C for macsema-defined meta data ID numbers. If you have a suggestion for a meta data field which could apply to a variety of different applications, please contact MacSema so that we can consider creating a standard ID number for the data, to facilitate standardness.

File I/O XE "File I/O" functions

Functions are provided which allow files to be directly read/written on the button, without first copying the data to the PC.

Multiple files can be open on the button at the same time.

When a file is opened with fileaccess_readwrite, it is marked as open on the button. If contact is lost before the file is closed, it will be marked as Partial the next time the button is opened.

When a file is opened with fileaccess_readonly, it is not marked as being open and will not be marked as partial if contact is lost.

File I/O functions support cryptography. Use the Ex versions of the open functions to deal with encrypted files directly. The encryption password is kept in memory while the file is open, and is erased (overwritten) when the file is closed, or when contact is lost. The encryption process is completely transparent and automatic.

Block I/O XE "File I/O:Block I/O"
The block (Blk) functions allow fixed-length records to be managed.

What blocksize should be used?

The difference between reading 64 blocks of 1 byte and 1 block of 64 bytes, is that in a file which is not evenly divisible by 64, you will get an EOF error before you get the entire file using a blocksize of 64, whereas you'll get whatever data remained using a blocksize of 1, with an EOF returned when there actually isn't any more data to be read.

Block sizes other than 1 byte should only be used when reading data from files which by definition are divisible evenly by the block size. For example, if a file consists of 1000-byte fixed-length records, use a block size of 1000. If a file is JPEG data, or non-fixed length, use a block size of 1 byte.

Block size itself does not impact read performance; read performance is only impacted by the total number of bytes being read.

Example Programs

Please refer to the CD/DVD.
Function Reference

All functions use the stdcall calling convention.

All functions return an error code from the error code list in Appendix A. kMblinkErr_None (zero) indicates success.

In addition to the error codes listed for each function, the file system functions can also return the following errors:

Error codes:

kMblinkErr_NoContact
The Mega ButtonLink did not detect the presence of a MegaButton.

kMblinkErr_LostContact
The MegaButton which was inserted in the Mega ButtonLink at the time of the call to mblink_Open was removed. mblink_Close has been automatically called, and mblink_Open must be called again before the button can be worked with further.

kMblinkErr_Status
An error occured while requesting status information from the Mega ButtonLink. If this error persists, it indicates a malfunctioning Mega ButtonLink.

kMblinkErr_NotOpen
The MegaButton isn't open. Call mblink_Open.

kMblinkErr_FSFull
The file system does not have enough room for overhead required by the current operation.

kMblinkErr_Write
Data being written to the MegaButton failed the readback verification test. This is usually caused by contact being lost. Generally, the kMblinkErr_LostContact message will be seen instead of this message. If kMblinkErr_Write occurs without contact having been lost, the MegaButton may have exceeded its useful life, and MacSema should be contacted. The memory used in MegaButtons can be rewritten over 200,000 times under normal operating conditions.

kMblinkErr_General
A general error occured. This is usually related to internal values being out of the expected boundaries, and should never occur. If this error does occur, please contact MacSema.

kMblinkErr_RestrictedPage
An internal routine attempted to write to a restricted area of the MegaButton's memory. This error is produced when certain internal failsafes are triggered. This should never occur. If this error does occur, please contact MacSema.

mblink_GetDLLVersion XE "mblink_GetDLLVersion"
C
int mblink_GetDLLVersion(unsigned char *pbyMajor, unsigned char *pbyMinor, unsigned long *pdwExtended)

C#
void mblink.GetDLLVersion(ref byte byMajor, ref byte byMinor, ref uint dwExtended)

pbyMajor
Major version of the DLL

pbyMinor
Minor version of the DLL

pdwExtended
Extended version of the DLL

Obtains the version number of the mblink32 DLL.

Example: After a successful call, if pbyMajor=1, pbyMinor=0, and pdwExtended=5, then version is v1.0.5

mblink_GetMblinkVersion XE "mblink_GetMblinkVersion"
C

int mblink_GetMblinkVersion(unsigned char *pbyMajor, unsigned char *pbyMinor)

C#

void mblink.GetMblinkVersion(ref byte byMajor, ref byte byMinor)

pbyMajor
Major version of the USB Mega ButtonLink

pbyMinor
Minor version of the USB Mega ButtonLink

Obtains the version number of the USB Mega ButtonLink. Must be called with the Mega ButtonLink turned on (using mblink_On).

Example: After a successful call, if pbyMajor=1 and pbyMinor=2, then version is v1.2

mblink_On XE "mblink_On"
C
int mblink_On(void)

C#
void mblink.On()

Opens the Mega ButtonLink device driver. This function should be called once, when the application first loads, prior to calling other functions dependant on communication with the Mega ButtonLink.

Error codes:

kMblinkErr_DeviceAlreadyOpen

The device driver has already been opened.

kMblinkErr_DeviceNotFound
The Mega ButtonLink was not found. Either it is not attached, the driver has not been installed, or the hub it is connected to has insufficient power.

mblink_RegisterFeedbackHWND XE "mblink_RegisterFeedbackHWND"
C
int mblink_RegisterFeedbackHWND(HWND aHWND)

C#
void mblink.RegisterFeedbackHWND(IntPtr aHWND)

Registers a HWND (window handle) for feedback messages. This function is usually called once, at the start of the application. Feedback messages are sent to the HWND specified via the Windows API call SendMessage, as WM_SETTEXT. A WM_PAINT message is also sent immediatly after WM_SETTEXT, since some RAD systems don't trigger their OnChange events until the paint event occurs.

The application should perform status updates, screen drawing, etc. as quickly as possible when processing the feedback data.
mblink_Off XE "mblink_Off"
C
int mblink_Off(void)

C#
void mblink.Off()

Closes the Mega ButtonLink device driver. This function should be called once, when the application closes. No functions dependant on communication with the Mega ButtonLink can be called after mblink_Off (unless mblink_On is called again).

Error codes:

kMblinkErr_DeviceNotOpen
The device driver isn't open. Either mblink_On hasn't been called yet, or was called but failed, or mblink_Off was already called since the last call to mblink_On.

mblink_Open XE "mblink_Open"
C
int mblink_Open(void)

C#
void mblink.Open()

Opens a MegaButton, loads file system information. This function must be sucessfully called before any file system functions can be called.

Error codes:

kMblinkErr_AlreadyOpen
The Mega Button is already open.

kMblinkErr_NoContact
Either no Mega Button is present, or the Mega Button or Mega ButtonLink is not functioning properly.

kMblinkErr_HeaderChecksum
The factory-set boilerplate on the Mega Button appears to be damaged. If the error persists, MacSema should be contacted for an RMA number and/or technical support.

kMblinkErr_Format
The factory-set file system formatting appears to be damaged, or is newer than the installed version of mblink32.dll supports. Contact MacSema for technical support.

mblink_Close XE "mblink_Close"
C
int mblink_Close(void)

C#
void mblink.Close()

Closes a currently open MegaButton. This function should be called after the application is done calling file system functions on a MegaButton.

Error codes:

kMblinkErr_NotOpen

The MegaButton isn't open.

mblink_Contact XE "mblink_Contact"
C
int mblink_Contact(unsigned char *pbyContact)

C#
void mblink.Contact(ref byte byContact)

Checks for the presence of a MegaButton. If a MegaButton is inserted in the Mega ButtonLink, the value of *pbyContact will be one, otherwise it will be zero.

Error codes:

kMblinkErr_Status
An error occured while requesting status information from the Mega ButtonLink. If this error persists, it indicates a malfunctioning Mega ButtonLink.

mblink_GetButtonType XE "mblink_GetButtonType"
C
int mblink_GetButtonType(unsigned char *pbyType)

C#
void mblink.GetButtonType(ref byte byType)

Detects the type of MegaButton present. The value of *pbyType indicates the button type/capacity. See Appendix A, under the heading "Button Types", for a list of possible values. Note that a value of kButtonUnsupported is different from kMblinkErr_UnknownButtonType. An unsupported button is recognized, but unsupported by the version of mblink32.dll being used. An unknown button type is unrecognized and unsupported.

Error codes:

kMblinkErr_UnknownButtonType
The MegaButton currently inserted in the Mega ButtonLink was not recognized by mblink32.dll, and cannot be used. Make sure that the latest version of mblink32.dll is being used. If the latest version is being used, and the error persists, it may indicate a malfunctioning Mega ButtonLink or MegaButton.

mblink_GetFreeSpace XE "mblink_GetFreeSpace"
C
int mblink_GetFreeSpace(unsigned long *dwFreeSpace)

C#
void mblink.GetFreeSpace(ref uint dwFreeSpace)

Provides the amount of available storage, in bytes. *dwFreeSpace contains the amount of available storage, in bytes.

Because of the way that MBFS minimizes filesystem overhead, the value returned is approximate. Each new file stored on the MegaButton requires a small amount of file system overhead. mblink32.dll automatically subtracts enough space for a simple file, but files which have extra meta data (such as password protected or encrypted files) may require more file system overhead. Thus, the application should allow for approximately 2,000 bytes less than the amount indicated if it plans to encrypt, password-protect, or apply other meta data to a newly created file.

mblink_GetLotNumber XE "mblink_GetSerialNumStr"
int mblink_GetLotNumber(word *wLotNumber);

Retrieves the lot number of the currently open MegaButton. If the function succeeds, the return value zero.
Error codes:

kMblinkErr_LostContact
The MegaButton which was inserted in the Mega ButtonLink at the time of the call to mblink_Open was removed. mblink_Close has been automatically called, and mblink_Open must be called again before the button can be worked with further.

kMblinkErr_NotOpen
The MegaButton isn't open. Call mblink_Open.

mblink_GetRunNumber XE "mblink_GetSerialNumStr"
int mblink_GetRunNumber(word *dwRunNumber);

Retrieves the run number of the currently open MegaButton. If the function succeeds, the return value zero.

Error codes:

kMblinkErr_LostContact
The MegaButton which was inserted in the Mega ButtonLink at the time of the call to mblink_Open was removed. mblink_Close has been automatically called, and mblink_Open must be called again before the button can be worked with further.

kMblinkErr_NotOpen
The MegaButton isn't open. Call mblink_Open.

mblink_GetSerialNumStr XE "mblink_GetSerialNumStr"
int mblink_GetSerialNumStr(char *pszSerialStr, unsigned short wMaxSize);

Retrieves the serial number of the currently open MegaButton. pszSerialStr should point to a pre-allocated area of memory, with wMaxSize indicating the size of the area in bytes. Serial numbers are unique, 12-digit hexadecimal values. The application should provide a pre-allocated area of at least 13 bytes. See the section "String Allocation" for more information.

Error codes:

kMblinkErr_FieldTooBig
The serial number is too big to fit in the memory provided. Provide a larger buffer.
mblink_GetNumDirs XE "mblink_GetNumDirs"
int mblink_GetNumDirs(unsigned short *wCount);

Gets the number of directories contained within the Current Working Directory. *wCount contains the maximum index value for ByNumber directory functions. If there are three directories contained within the CWD, *wCount will be 3, and the directories are numbered 1, 2, and 3.

Error codes:

kMblinkErr_PasswordRequired
A read password is required, either on the CWD or on one of the CWD's parent directories.

mblink_GetDirNameByNumber XE "mblink_GetDirNameByNumber"
int mblink_GetDirNameByNumber(unsigned short wDir, char *pszDirName, unsigned short wMaxSize);

Gets the name of a directory. wDir is a value from 1 to the current maximum index value (see mblink_GetNumDirs). pszDirName should be pre-allocated to a minimum of 255 bytes. wMaxSize indicates the number of bytes allocated for pszDirName.

Error codes:

kMblinkErr_PasswordRequired
A read password is required, either on the CWD or on one of the CWD's parent directories.
mblink_AddDir XE "mblink_AddDir"
int mblink_AddDir(char *pszDirName);

Adds a new directory to the Current Working Directory. *pszDirName is the name of the directory to create.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the CWD or on one of the CWD's parent directories.

kMblinkErr_DirExists
A directory already exists with the name specified.

kMblinkErr_InsufficientSpace
The file system doesn't have enough room to create the new directory.

kMblinkErr_FilenameTooLong
The name specified is too long (max 255 characters)

kMblinkErr_NullFilename
The name specified is empty.

kMblinkErr_FilenameInvalidChars
The name specified contains one or more of the following invalid characters:

\ / : * ? " < > |
mblink_DeleteDir XE "mblink_DeleteDir"
int mblink_DeleteDir(char *pszDirName);

int mblink_DeleteDirByNumber(unsigned short wDir);

Deletes a directory. *pszDirName is the name or path of the directory to delete. The directory must be empty. In the ByNumber version, wDir is the index of the directory to delete.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target directory or on one of its parent directories.

kMblinkErr_DirNotEmpty
The target directory is not empty.

kMblinkErr_CannotDeleteCurrentDir
The target directory is the current working directory. The CWD cannot be deleted. Change to the CWD's parent directory before deleting.

kMblinkErr_CannotDeleteRootDir
The target directory is the root directory, which cannot be deleted.

kMblinkErr_InvalidDirNumber
The index specified is invalid (ByNumber version only).

kMblinkErr_DirNotFound
One or more of the directories in the path specified was not found.

mblink_ChDir XE "mblink_ChDir"
int mblink_ChDir(char *pszDirName);

int mblink_ChDirByNumber(unsigned short wDir);

Changes the Current Working Directory to the dir specified. *pszDirName is the name or path of the directory to change to. In the ByNumber version, wDir is the index of the directory to change to.

Error codes:

kMblinkErr_PasswordRequired
A read password is required, either on the target directory or on one of its parent directories.

kMblinkErr_InvalidDirNumber
The index specified is invalid (ByNumber version only).

mblink_GetCurrentPath XE "mblink_GetCurrentPath"
int mblink_GetCurrentPath(char *pszDirName, unsigned short wMaxSize);

Gets a string representation of the Current Working Directory. *pszDirName should be preallocated to at least 255 bytes, more may be required if the CWD is deeply nested. wMaxSize indicates the number of bytes allocated for pszDirName.

Error codes:

kMblinkErr_FieldTooBig
The CWD is too big to fit in the memory provided. Provide a larger buffer.

mblink_GetDirAccess XE "mblink_GetDirAccess"
int mblink_GetDirAccess(char *pszDirName, unsigned char *byReadPassword, unsigned char *byWritePassword);

int mblink_GetDirAccessByNumber(unsigned short wDir, unsigned char *byReadPassword, unsigned char *byWritePassword);

Gets information about password protection on the specified directory. *pszDirName is the name or path of the target directory. For the ByNumber version, wDir is the index of the target directory. *byReadPassword is one if the target has a read password, zero if not. *byWritePassword is one if the target has a write password, zero if not.

mblink_GetDirMeta XE "mblink_GetDirMeta"
int mblink_GetDirMeta(char *pszDirName, unsigned long wFieldID, char *pszData, unsigned short wMaxSize);

int mblink_GetDirMetaByNumber(unsigned short wDir, unsigned long wFieldID, char *pszData, unsigned short wMaxSize);

Gets meta data from a directory. *pszDirName is the name or path of the target directory. For the ByNumber version, wDir is the index of the target directory. wFieldID is the meta data field ID of the desired field, *pszData is a pre-allocated buffer for the value to be stored in, wMaxSize is the size of the buffer.

Error codes:

kMblinkErr_PasswordRequired
A read password is required, either on the target directory or on one of its parent directories. Note: Read passwords only protect meta data with field IDs of 8001 thru 32767.
kMblinkErr_FieldNotFound
The Field ID specified doesn't exist for the target directory.

kMblinkErr_FieldTooBig
The field data is too big to fit in the memory provided. Provide a larger buffer.

mblink_SetDirMeta XE "mblink_SetDirMeta"
int mblink_SetDirMeta(char *pszDirName, unsigned long wFieldID, char *pszData);

int mblink_SetDirMetaByNumber(unsigned short wDir, unsigned long wFieldID, char *pszData);

Sets meta data for a directory. *pszDirName is the name or path of the target directory. For the ByNumber version, wDir is the index of the target directory. wFieldID is the meta data field ID of the desired field, *pszData is the data to be set.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target directory or on one of its parent directories. Note: Read passwords only protect meta data with field IDs of 8001 thru 32767.
kMblinkErr_MemoryAllocation
An error occured while mblink32 was attempting to allocate memory. The application should be restarted.

mblink_GetNumFiles XE "mblink_GetNumFiles"
int mblink_GetNumFiles(unsigned short *wCount);

Gets the number of files in the Current Working Directory. *wCount contains the maximum index value for ByNumber file functions. If there are three files contained within the CWD, *wCount will be 3, and the files are numbered 1, 2, and 3.

Error codes:

kMblinkErr_PasswordRequired
A read password is required, either on the CWD or on one of the CWD's parent directories.

mblink_GetFileSize XE "mblink_GetFileSize"
int mblink_GetFileSize(char *pszFileName, unsigned long *dwFileSize);

int mblink_GetFileSizeByNumber(unsigned short wFile, unsigned long *dwFileSize);

Gets the file size, in bytes, of a file. *pszFileName is the path or name of the target file. For the ByNumber version, wFile is the index of the target file. *dwFileSize contains the size of the file, in bytes.

Error codes:

kMblinkErr_PasswordRequired
A read password is required, either on the CWD or on one of the CWD's parent directories.

mblink_GetFileNameByNumber XE "mblink_GetFileNameByNumber"
int mblink_GetFileNameByNumber(unsigned short wFile, char *pszFileName, unsigned short wMaxSize);

Gets the name of a file. wFile is the index of the target file. *pszFileName is a pre-allocated buffer for the file name, and should be at least 256 bytes in size. wMaxSize is the size of the allocated space, in bytes.

Error codes:

kMblinkErr_PasswordRequired
A read password is required, either on the CWD or on one of the CWD's parent directories.

mblink_GetFileAccess XE "mblink_GetFileAccess"
int mblink_GetFileAccess(char *pszFileName, unsigned char *byReadPassword, unsigned char *byWritePassword, unsigned char *byPartial);

int mblink_GetFileAccessByNumber(unsigned short wFile, unsigned char *byReadPassword, unsigned char *byWritePassword, unsigned char *byPartial);

Gets information about password protection and status ailment on the specified file. *pszFileName is the name or path of the target file. For the ByNumber version, wFile is the index of the target file. *byReadPassword is one if the target has a read password, zero if not. *byWritePassword is one if the target has a write password, zero if not. *byPartial is one if the target has been marked as partially written, zero if not.

mblink_DirReadPassword XE "mblink_DirReadPassword"
int mblink_DirReadPassword(char *pszDirName, char *pszPassword);

int mblink_DirReadPasswordByNumber(unsigned short wDir, char *pszPassword);

Supplies the read password for a password-protected directory. *pszDirName is the path or name of the target directory. For the ByNumber version, wDir is the index of the target directory. *pszPassword is the password.

Error codes:

kMblinkErr_NoPassword
The directory is either not protected, or has already been unlocked during the current session.

kMblinkErr_InvalidPassword
The password supplied does not match the password for the directory.

mblink_DirWritePassword XE "mblink_DirWritePassword"
int mblink_DirWritePassword(char *pszDirName, char *pszPassword);

int mblink_DirWritePasswordByNumber(unsigned short wDir, char *pszPassword);

Supplies the write password for a password-protected directory. *pszDirName is the path or name of the target directory. For the ByNumber version, wDir is the index of the target directory. *pszPassword is the password.

Error codes:

kMblinkErr_NoPassword
The directory is either not protected, or has already been unlocked during the current session.

kMblinkErr_InvalidPassword
The password supplied does not match the password for the directory.
mblink_SetDirReadPassword XE "mblink_SetDirReadPassword"
int mblink_SetDirReadPassword(char *pszDirName, char *pszPassword);

int mblink_SetDirReadPasswordByNumber(unsigned short wDir, char *pszPassword);

Sets the read password for a directory. *pszDirName is the path or name of the target directory. For the ByNumber version, wDir is the index of the target directory. *pszPassword is the password.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target directory or on one of its parent directories.

mblink_SetDirWritePassword XE "mblink_SetDirWritePassword"
int mblink_SetDirWritePassword(char *pszDirName, char *pszPassword);

int mblink_SetDirWritePasswordByNumber(unsigned short wDir, char *pszPassword);

Sets the write password for a directory. *pszDirName is the path or name of the target directory. For the ByNumber version, wDir is the index of the target directory. *pszPassword is the password.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target directory or on one of its parent directories.

mblink_RemoveDirReadPassword XE "mblink_RemoveDirReadPassword"
int mblink_RemoveDirReadPassword(char *pszDirName);

int mblink_RemoveDirReadPasswordByNumber(unsigned short wDir);

Removes a read password from a directory. *pszDirName is the path or name of the target directory. For the ByNumber version, wDir is the index of the target directory.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target directory or on one of its parent directories.

mblink_RemoveDirWritePassword XE "mblink_RemoveDirWritePassword"
int mblink_RemoveDirWritePassword(char *pszDirName);

int mblink_RemoveDirWritePasswordByNumber(unsigned short wDir);

Removes a write password from a directory. *pszDirName is the path or name of the target directory. For the ByNumber version, wDir is the index of the target directory.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target directory or on one of its parent directories.

mblink_ValidateFilename XE "mblink_ValidateFilename"
int mblink_ValidateFilename(char *szFilename);

Validates a file name based on content. szFilename contains the file name. A return result of kMblinkErr_None indicates that the file name is valid. This function does not check for the existance of a file with the same name as szFilename, it merely checks that the filename complies with the naming rules.

Error codes:

kMblinkErr_FilenameTooLong
The name specified is too long (max 255 characters)

kMblinkErr_NullFilename
The name specified is empty.

kMblinkErr_FilenameInvalidChars
The name specified contains one or more of the following invalid characters:

\ / : * ? " < > |
mblink_AddFile XE "mblink_AddFile"
int mblink_AddFile(char *pszSource, char *pszFilename);

int mblink_AddFileEx(char *pszSource, char *pszFilename, char *pszReadPassword, char *pszWritePassword);

Copies a file from the PC to the button. pszSource is the path or filename on the PC of the file to copy. pszFilename is the name that the file will have on the button. Files added this way are placed in the Current Working Directory.

For the Extended function, pszReadPassword is the read password to be set on the file and pszWritePassword is the write password to be set on the file. An empty (null) string or a null pointer can be passed in for any of the two extended parameters. For example, to add a file which has a read password set but no write, pass the read password in but pass null or an empty string for the write password parameter.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the CWD or one of its parent directories.

kMblinkErr_FileExists
A file already exists in the CWD with the filename specified by pszFilename.

kMblinkErr_UnableToOpenLocalFile
mblink32.dll was unable to open the local file specified by pszSource. The file may be open by anouther application, or the path may be incorrect.

kMblinkErr_FileTooBig
There is insufficient free space on the button to add the file. This error may occur immediately, or it may occur after the file transfer has already begun, in the case that one or more bad blocks were encountered on the button and insufficient free space was available to make up for them. Bad blocks are relatively rare.

kMblinkErr_NotOpen
The MegaButton is not open. mblink_Open must be called successfully before mblink_AddFile can function.

mblink_DeleteFile XE "mblink_DeleteFile"
int mblink_DeleteFile(char *pszFilename);

int mblink_DeleteFileByNumber(unsigned short wFile);

Deletes a file from the button. pszFilename specifies the path or name of the file to delete. For the ByNumber version, wFile specifies the index of the file.

Error codes:

kMblinkErr_FileInUse
The file is currently open, and must be closed (by calling mblink_CloseFile) before it can be deleted.

kMblinkErr_PasswordRequired
A read or write password is required by either the file or one of its parent directories.

kMblinkErr_FileNotFound
The file specified was not found.

kMblinkErr_DirNotFound
One or more of the directories in the path specified was not found.

kMblinkErr_InvalidFileNumber
The index specified is not valid.

mblink_GetFile XE "mblink_GetFile"
int mblink_GetFile(char *pszFilename, char *pszDest);

int mblink_GetFileEx(char *pszFilename, char *pszDest, char *pszReadPassword, char *pszCryptoPassword);

int mblink_GetFileByNumber(unsigned short wFile, char *pszDest);

Copies a file from the button to the PC. pszFilename specifies the name or path of the source file on the button, pszDest specifies the name or path to the destination file on the PC. For the ByNumber version, wFile specifies the index of the source file on the button.

For the Extended function, pszReadPassword specifies the read password for the file. If the correct read password is specified, the file is unlocked for the duration of the copy operation only, and returns to being read protected as soon as the copy is over. In either case, the file's data on the button is not modified.

Error codes:

kMblinkErr_FilePartial
The file has been flagged as being "Partial". This means that contact with the button was broken while the file was open for writing during a previous session. A partial file cannot be copied to the PC until mblink_RecoverFile has been called for the file.

kMblinkErr_PasswordRequired
A read password is required either by the source file or one of its parent directories.

kMblinkErr_UnableToOpenLocalFile
mblink32.dll was unable to open the file specified by pszDest for writing. Either the file is in use by another process, the file name or path is invalid, or the target drive is full.

mblink_GetFileCreatedUTC XE "mblink_GetFileCreatedUTC"
int mblink_GetFileCreatedUTC (char *pszFileName, unsigned short *wYear, unsigned char *byMonth, unsigned char *byDay, unsigned long *dwSeconds);

int mblink_GetFileCreatedUTCByNumber(unsigned short wFile, unsigned short *wYear, unsigned char *byMonth, unsigned char *byDay, unsigned long *dwSeconds);

Gets the time that a file was created, in Coordinated Universal Time (UTC). pszFilename specifies the name or path of the target file. For the ByNumber version, wFile is the index of the target file. *wYear contains the year that the file was created (eg. 2003). *byMonth contains the month (1 thru 12), *byDay contains the day within the month (1 thru 31), and *dwSeconds contains the elapsed seconds since midnight on the day of creation.

Error codes:

kMblinkErr_FileNotFound
The file specified was not found.

kMblinkErr_DirNotFound
One or more of the directories in the path specified was not found.

kMblinkErr_InvalidFileNumber
The index specified is not valid.

mblink_GetFileModifiedUTC XE "mblink_GetFileModifiedUTC"
int mblink_GetFileModifiedUTC(char *pszFileName, unsigned short *wYear, unsigned char *byMonth, unsigned char *byDay, unsigned long *dwSeconds);

int mblink_GetFileModifiedUTCByNumber(unsigned short wFile, unsigned short *wYear, unsigned char *byMonth, unsigned char *byDay, unsigned long *dwSeconds);

Gets the time that a file was last modified, in Coordinated Universal Time (UTC). pszFilename specifies the name or path of the target file. For the ByNumber version, wFile is the index of the target file. *wYear contains the year that the file was created (eg. 2003). *byMonth contains the month (1 thru 12), *byDay contains the day within the month (1 thru 31), and *dwSeconds contains the elapsed seconds since midnight on the day of creation.

The modification stamp is updated whenever a file's contents or meta data are written to.

Error codes:

kMblinkErr_FileNotFound
The file specified was not found.

kMblinkErr_DirNotFound
One or more of the directories in the path specified was not found.

kMblinkErr_InvalidFileNumber
The index specified is not valid.

mblink_GetFileMeta XE "mblink_GetFileMeta"
int mblink_GetFileMeta(char *pszFileName, unsigned long wFieldID, char *pszData, unsigned short wMaxSize);

int mblink_GetFileMetaByNumber(unsigned short wFile, unsigned long wFieldID, char *pszData, unsigned short wMaxSize);

Gets meta data from a file. *pszFileName is the name or path of the target file. For the ByNumber version, wFile is the index of the target file. wFieldID is the meta data field ID of the desired field, *pszData is a pre-allocated buffer for the value to be stored in, wMaxSize is the size of the buffer.

Error codes:

kMblinkErr_PasswordRequired
A read password is required, either on the target file or on one of its parent directories. Note: Read passwords only protect meta data with field IDs of 8001 thru 32767.
kMblinkErr_FieldNotFound
The Field ID specified doesn't exist for the target directory.

kMblinkErr_FieldTooBig
The field data is too big to fit in the memory provided. Provide a larger buffer.

mblink_SetFileMeta XE "mblink_SetFileMeta"
int mblink_SetFileMeta(char *pszFileName, unsigned long wFieldID, char *pszData);

int mblink_SetFileMetaByNumber(unsigned short wFile, unsigned long wFieldID, char *pszData);

Sets meta data for a file. *pszFileName is the name or path of the target file. For the ByNumber version, wFile is the index of the target directory. wFieldID is the meta data field ID of the desired field, *pszData is the data to be set.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target file or on one of its parent directories. Note: Read passwords only protect meta data with field IDs of 8001 thru 32767.
kMblinkErr_MemoryAllocation
An error occured while mblink32 was attempting to allocate memory. The application should be restarted.

mblink_FileOpenBlk XE "mblink_FileOpenBlk"
int mblink_FileOpenBlk(char *pszFileName, unsigned char byAccess, unsigned short wBlockSize, unsigned short *wRefNum);

int mblink_FileOpenBlkEx(char *pszFileName, unsigned char byAccess, unsigned short wBlockSize, unsigned short *wRefNum, char *pszReadPassword, char *pszWritePassword);

Opens a file for block-mode random access. *pszFileName is the name or path of the target file. byAccess is the desired access mode (fileaccess_readonly or fileaccess_readwrite, see Appendix A for values). wBlockSize is the size, in bytes, of each block for fixed-length record files (for non-fixed-length record files, use 1 (one) for the block size). wRefNum is set to the "Reference Number" of the open file on success.

For the Extended version, pszReadPassword is the read password for the file and pszWritePassword is the write password. See mblink_GetFileEx for details.

The Reference Number, wRefNum, must be retained since it is required for all other direct access file functions. A reference number is like a coat closet ticket number. It lets the file system know which open file is being referred to on subsequent calls.

Reference Numbers are only valid from the time that a file is open until the time that the file is closed or the button is closed.

If a file is opened with the access mode fileaccess_readwrite, and mblink_FileClose is not called before mblink_Close (remember that mblink_Close is called automatically if the button is removed from the link!), the file is automatically marked as Partial.

The file access pointer is set to zero (start of file) when the file is opened.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target file or on one of its parent directories.

kMblinkErr_FileAlreadyOpen

The target file is already open.

kMblinkErr_FilePartial
The target file is marked Partial. See mblink_GetFile for details.

mblink_FileClose XE "mblink_FileClose"
int mblink_FileClose(unsigned short wRefNum);

Closes an open file. wRefNum is the reference number of the target file.

Error codes:

kMblinkErr_FileNotOpen

The file is not open.

kMblinkErr_InvalidRefNum

The refnum is invalid.

mblink_FileSeekBlk XE "mblink_FileSeekBlk"
int mblink_FileSeekBlk(unsigned short wRefNum, long lOffset, unsigned char byOrigin);

Moves the file access pointer. wRefNum is the reference number of the target file. lOffset is the amount to move the file access pointer by (in blocks). byOrigin is the origin point to move from: fileseek_start (start of file), fileseek_curr (current position), fileseek_end (end of file). See Appendix A for values.

Error codes:

kMblinkErr_FileNotOpen

The file is not open.

kMblinkErr_InvalidRefNum

The reference number (wRefNum) is invalid.

kMblinkErr_SOF
The seek moved the file pointer past the Start of File.

kMblinkErr_EOF
The seek moved the file pointer past the End of File.

mblink_FileReadBlk XE "mblink_FileReadBlk"
int mblink_FileReadBlk(unsigned short wRefNum, unsigned char *pbyData, unsigned long dwBlocks, unsigned long *dwBlocksRead);

Reads data from an open file. wRefNum is the reference number of the target file. pbyData points to a pre-allocated block of memory of sufficient size to hold the data. dwBlocks is the desired number of blocks to read, dwBlocksRead is set to the number of blocks actually read.

Error codes:

kMblinkErr_FileNotOpen

The file is not open.

kMblinkErr_InvalidRefNum

The reference number (wRefNum) is invalid.

kMblinkErr_EOF
The read operation moved the file access pointer beyond the end of file.

kMblinkErr_UnexpectedEOF
An unexpected EOF indicates an error in the file system, and should never occur. If an unexpected EOF occurs, please contact MacSema.

mblink_FileWriteBlk XE "mblink_FileWriteBlk"
int mblink_FileWriteBlk(unsigned short wRefNum, unsigned char *pbyData, unsigned long dwBlocks, unsigned long *dwBlocksWritten);

Writes data to an open file. wRefNum is the reference number of the target file. pbyData points to the block of memory to write to the file. dwBlocks is the desired number of blocks to write, dwBlocksWritten is set to the number of blocks actually written.

Error codes:

kMblinkErr_FileNotOpen

The file is not open.

kMblinkErr_InvalidRefNum

The refnum is invalid.

kMblinkErr_ReadOnly
The file is open, but it was opened with fileaccess_readonly and cannot be written to.

kMblinkErr_EOF
The write operation moved the file access pointer beyond the end of file.

kMblinkErr_UnexpectedEOF
An unexpected EOF indicates an error in the file system, and should never occur. If an unexpected EOF occurs, please contact MacSema.

mblink_FileReadPassword XE "mblink_FileReadPassword"
int mblink_FileReadPassword(char *pszFileName, char *pszPassword);

int mblink_FileReadPasswordByNumber(unsigned short wFile, char *pszPassword);

Supplies the read password for a password-protected File. *pszFileName is the path or name of the target File. For the ByNumber version, wFile is the index of the target File. *pszPassword is the password.

Error codes:

kMblinkErr_NoPassword
The File is either not protected, or has already been unlocked during the current session.

kMblinkErr_InvalidPassword
The password supplied does not match the password for the File.

mblink_FileWritePassword XE "mblink_FileWritePassword"
int mblink_FileWritePassword(char *pszFileName, char *pszPassword);

int mblink_FileWritePasswordByNumber(unsigned short wFile, char *pszPassword);

Supplies the write password for a password-protected File. *pszFileName is the path or name of the target File. For the ByNumber version, wFile is the index of the target File. *pszPassword is the password.

Error codes:

kMblinkErr_NoPassword
The File is either not protected, or has already been unlocked during the current session.

kMblinkErr_InvalidPassword
The password supplied does not match the password for the File.
mblink_SetFileReadPassword XE "mblink_SetFileReadPassword"
int mblink_SetFileReadPassword(char *pszFileName, char *pszPassword);

int mblink_SetFileReadPasswordByNumber(unsigned short wFile, char *pszPassword);

Sets the read password for a File. *pszFileName is the path or name of the target File. For the ByNumber version, wFile is the index of the target File. *pszPassword is the password.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target File or on one of its parent Directories.

mblink_SetFileWritePassword XE "mblink_SetFileWritePassword"
int mblink_SetFileWritePassword(char *pszFileName, char *pszPassword);

int mblink_SetFileWritePasswordByNumber(unsigned short wFile, char *pszPassword);

Sets the write password for a File. *pszFileName is the path or name of the target File. For the ByNumber version, wFile is the index of the target File. *pszPassword is the password.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target File or on one of its parent Directories.

mblink_RemoveFileReadPassword XE "mblink_RemoveFileReadPassword"
int mblink_RemoveFileReadPassword(char *pszFileName);

int mblink_RemoveFileReadPasswordByNumber(unsigned short wFile);

Removes a read password from a File. *pszFileName is the path or name of the target File. For the ByNumber version, wFile is the index of the target File.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target File or on one of its parent Directories.

mblink_RemoveFileWritePassword XE "mblink_RemoveFileWritePassword"
int mblink_RemoveFileWritePassword(char *pszFileName);

int mblink_RemoveFileWritePasswordByNumber(unsigned short wFile);

Removes a write password from a File. *pszFileName is the path or name of the target File. For the ByNumber version, wFile is the index of the target File.

Error codes:

kMblinkErr_PasswordRequired
A read or write password is required, either on the target File or on one of its parent Directories.

mblink_TagAtaSpec2000UserMemoryRead XE "mblink_TagAtaSpec2000UserMemoryRead"
unsigned short mblink_TagAtaSpec2000UserMemoryRead(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

wSize
[In] The length of the block of data to be read.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Gets a block of data from the User memory of the CMB. The mblink_TagAtaSpec2000FormatHighMemoryfunction is used to initially add the data to the CMB, which can then be returned in this call
Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagReadEpc XE "mblink_TagReadEpc"
unsigned short mblink_TagReadEpc(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

wSize
[In] The length of the block of data to be read.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Gets a block of data from the EPC memory of the CMB. EPC stands for Electronic Product Code and is designed as a universal identifier that provides a unique identity for every physical object anywhere in the world, for all time. Its structure is defined in the EPCglobal Tag Data Standard. The mblink_TagWriteEpc function is used to initially add the data, which can then be returned in this call.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagWriteEpc XE "mblink_TagWriteEpc"
unsigned short mblink_TagWriteEpc(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

BOOL bDemoMode

);

Parameters
*buffer
[In] The data to be written.

wSize
[In] The length of the block of data to be written.

bDemoMode
[In] Set FALSE for full mode or TRUE to place in demo mode. Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Gets a block of data to the EPC memory of the CMB. EPC stands for Electronic Product Code and is designed as a universal identifier that provides a unique identity for every physical object anywhere in the world, for all time. Its structure is defined in the EPCglobal Tag Data Standard. The mblink_TagReadEpc function is used to read the data.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagReadTid XE "mblink_TagReadTid"
unsigned short mblink_TagReadTid(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

wSize
[In] The length of the block of data to be read.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Gets a block of data from the TID memory of the CMB. TID stands for Tag Identifier and is designed to be unalterable after it has been set. The mblink_TagWriteTid function is used to initially add the data, which can then be returned in this call.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagWriteTid XE "mblink_TagWriteTid"
unsigned short mblink_TagWriteTid(

UNSIGNED CHAR *buffer,

UNSIGNED SHORT wSize,

BOOL bDemoMode

);

Parameters
*buffer
[In] The data to be written.

wSize
[In] The length of the block of data to be written.

bDemoMode
[In] Set FALSE for full mode or TRUE to place in demo mode. Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Writes a block of data to the TID memory of the CMB. TID stands for Tag Identifier and is designed to be unalterable after it has been set. The mblink_TagReadTid function is used to read the data.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000FormatHighMemory XE "mblink_TagAtaSpec2000FormatHighMemory"
unsigned short mblink_TagAtaSpec2000FormatHighMemory(

UNSIGNED SHORT wUserMemorySizeBytes,

UNSIGNED CHAR *BirthData,

UNSIGNED CHAR *CurrentData,

UNSIGNED SHORT wCurrentDataSizeBytes,

UNSIGNED CHAR *ScratchpadData,

UNSIGNED SHORT wScratchpadSizeBytes,

BOOL bDemoMode

);

Parameters
wUserMemorySizeBytes
[In] The total amount of User memory to be used for the ATA Spec 2000 data.

*BirthData
[In] The Birth data to be written.

*CurrentData
[In] The Current data to be written.

wCurrentDataSizeBytes
[In] The total amount of memory to be used for storing the Current Data. The Ata Spec 2000 recommends 2kbits (256 bytes).

*ScratchpadData
[In] The Scratchpad data to be written.

wScratchpsdSizeBytes
[In] The total amount of memory to be used for storing the Scratchpad Data. The Ata Spec 2000 recommends 3kbits (384 bytes).

bDemoMode
[In] Set FALSE for full mode or TRUE to place in demo mode. Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Writes the Birth, Current and Scratchpad data to the User memory on the CMB. The Birth data is unalterable once it has been set. The mblink_TagAtaSpec2000BirthRead function is used to read the Birth data, mblink_TagAtaSpec2000CurrentDataRead function is used to read the Current data and mblink_TagAtaSpec2000ScratchpadRead function is used to read the Scratchpad data.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000HistoryRecordAdd XE "mblink_TagAtaSpec2000HistoryRecordAdd"
unsigned short mblink_TagAtaSpec2000HistoryRecordAdd(unsigned char *buffer);
Adds a new History record to the User memory of the CMB. *buffer is the data to be written. A History record is designed to be unalterable after it has been set.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.
mblink_TagAtaSpec2000ScratchpadRecordWrite XE "mblink_TagAtaSpec2000ScratchpadRecordWrite"
unsigned short mblink_TagAtaSpec2000ScratchpadRecordWrite(unsigned char *buffer);
Writes the Scratchpad data record to the User memory of the CMB. *buffer is the data to be written. A Scratchpad record is designed to be altered after it has been set to allow users to make notes that may not fit the preset requirements. The mblink_TagAtaSpec2000ScratchpadRead function is used to read the data.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000CurrentDataRecordWrite XE "mblink_TagAtaSpec2000CurrentDataRecordWrite"
unsigned short mblink_TagAtaSpec2000CurrentDataRecordWrite(unsigned char *buffer);
Writes the Current data record to the User memory of the CMB. *buffer is the data to be written. A Current Data record is designed to be altered after it has been set to allow users to make changes to track the most current information. The mblink_TagAtaSpec2000CurrentDataRead function is used to read the data.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000BirthRead XE "mblink_TagAtaSpec2000BirthRead"
unsigned short mblink_TagAtaSpec2000BirthRead(

UNSIGNED CHAR *buffer,

DWORD dwSizeMax,

DWORD *dwSizeActual,

DWORD *dwClock,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

dwSizeMax
[In] The maximum length of the block of data to be read.

*dwSizeActual
[Out] The actual length of the block of data read.

*dwClock
[Out] The date and time the record was created expressed in the number of seconds elapsed since January 1, 2000 at 12am.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Gets the Birth data from the User memory of the CMB. The mblink_TagAtaSpec2000FormatHighMemory function is used to initially add the data, which can then be returned in this call.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000CurrentDataRead XE "mblink_TagAtaSpec2000CurrentDataRead"
unsigned short mblink_TagAtaSpec2000CurrentDataRead(

UNSIGNED CHAR *buffer,

DWORD dwSizeMax,

DWORD *dwSizeActual,

DWORD *dwClock,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

dwSizeMax
[In] The maximum length of the block of data to be read.

*dwSizeActual
[Out] The actual length of the block of data read.

*dwClock
[Out] The date and time the record was created expressed in the number of seconds elapsed since January 1, 2000 at 12am.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Gets the Current data record from the User memory on the CMB. The mblink_TagAtaSpec2000FormatHighMemory function is used to initially add the data, which can then be returned in this call.
Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.
mblink_TagAtaSpec2000ScratchpadRead XE "mblink_TagAtaSpec2000ScratchpadRead"
unsigned short mblink_TagAtaSpec2000ScratchpadRead(

UNSIGNED CHAR *buffer,

DWORD dwSizeMax,

DWORD *dwSizeActual,

DWORD *dwClock,

UNSIGNED CHAR *pbyMode

);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

dwSizeMax
[In] The maximum length of the block of data to be read.

*dwSizeActual
[Out] The actual length of the block of data read.

*dwClock
[Out] The date and time the record was created expressed in the number of seconds elapsed since January 1, 2000 at 12am.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Gets the Scratchpad data from the User memory of the CMB. The mblink_TagAtaSpec2000FormatHighMemory function is used to initially add the data, which can then be returned in this call.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000PartHistoryRecordCount XE "mblink_TagAtaSpec2000PartHistoryRecordCount"
unsigned short mblink_TagAtaSpec2000PartHistoryRecordCount(unsigned short *wCount);

Gets the number of ATA Spec 2000 Part History records in the User memory on the CMB. *wCount contains the number of ATA Spec 2000 Part History records on the CMB.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000PartHistoryRead XE "mblink_TagAtaSpec2000PartHistoryRead"
unsigned short mblink_TagAtaSpec2000PartHistoryRead(

UNSIGNED CHAR *buffer,

DWORD dwSizeMax,

DWORD *dwSizeActual,

DWORD *dwClock,

UNSIGNED CHAR *pbyMode,

INT nRecordTypeNumber
);

Parameters
*buffer
[Out] A pre-allocated buffer to save the data to.

dwSizeMax
[In] The maximum length of the block of data to be read.

*dwSizeActual
[Out] The actual length of the block of data read.

*dwClock
[Out] The date and time the record was created expressed in the number of seconds elapsed since January 1, 2000 at 12am.

*pbyMode
[Out] A pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

nRecordTypeNumber
[In] The part history record number.

Gets the specified Part History data from the User memory on the CMB.The mblink_TagAtaSpec2000HistoryRecordAdd function is used to initially add the data, which can then be returned in this call. It is recommended that the mblink_TagAtaSpec2000PartHistoryRecordCount call be used to retrieve the total number of part history records.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000RecordCount XE "mblink_TagAtaSpec2000RecordCount"
unsigned short mblink_TagAtaSpec2000RecordCount(unsigned short *wCount);

Gets the number of ATA Spec 2000 records on the CMB. *wCount contains the number of ATA Spec 2000 records on the CMB.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_GetNumSysFiles XE "mblink_GetNumSysFiles"
unsigned short mblink_GetNumSysFiles(unsigned short *wCount);

Gets the number of system files on the CMB. *wCount contains the number of system files on the CMB.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000Mode XE "mblink_TagAtaSpec2000Mode"
unsigned short mblink_TagAtaSpec2000Mode(unsigned char *pbyMode);

Gets the mode that the ATA Spec 2000 files were added to the CMB. *pbyMode is a pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000ModeAvailable XE "mblink_TagAtaSpec2000ModeAvailable"
unsigned short mblink_TagAtaSpec2000ModeAvailable(unsigned char *pbyMode);

Gets the mode that the ATA Spec 2000 files can be added to the CMB. *pbyMode is a pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000Formatted XE "mblink_TagAtaSpec2000Formatted"
unsigned short mblink_TagAtaSpec2000Formatted(unsigned char *pbyMode);

Gets the mode that the ATA Spec 2000 files can be added to the CMB. *pbyMode is a pre-allocated buffer to return the mode. The mode can be full mode (0 – zero) or demo mode (1 – one). Full mode locks the data per the ATA Spec 2000 requirements and demo mode allows the data to be overwritten which is meant for training purposes only.

Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaClear XE "mblink_TagAtaClear"
unsigned short mblink_TagAtaClear(void);
Clears all ATA Spec 2000 demo data from the CMB. Only demo data can be cleared from the CMB. A call to mblink_KillTag must be executed to permanently render the tag inoperable for ATA Spec 2000 data.
Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.
mblink_TagKill XE "mblink_TagKill"
unsigned short mblink_Kill(unsigned long dwPassword);

Permanently renders the tag inoperable for all future ATA Spec 2000 calls. dwPassword is the password to kill the CMB. The password is the CMB Run Number (mblink_BtnGetRunNumber) Exclusive Or (XOR) with 0x2345518.
Error codes:

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

mblink_TagAtaSpec2000UserMemoryWriteFlag XE "mblink_TagAtaSpec2000UserMemoryWriteFlag"
unsigned short mblink_TagAtaSpec2000UserMemoryWriteFlag(bool bWriteNoDelay);

Performs the write to the CMB immediately when set to true. The default is false and requires the program to call mblink_TagAtaSpec2000UserMemoryWrite to write the information to the CMB. The CMB ATA Spec 2000 calls mblink_TagAtaSpec2000CurrentDataRecordWrite, mblink_TagAtaSpec2000HistoryRecordAdd and mblink_TagAtaSpec2000ScratchpadRecordWrite update information in the User memory.
mblink_TagAtaSpec2000UserMemoryWrite XE "mblink_TagAtaSpec2000UserMemoryWrite" \b
unsigned short mblink_TagAtaSpec2000UserMemoryWrite();

The CMB User data gets updated with this call. This call is only required if the mblink_TagAtaSpec2000UserMemoryWriteFlag is set to false. The CMB ATA Spec 2000 calls mblink_TagAtaSpec2000CurrentDataRecordWrite, mblink_TagAtaSpec2000HistoryRecordAdd and mblink_TagAtaSpec2000ScratchpadRecordWrite update information in the User memory.
Error codes:

kMblinkErr_NotOpen
The MegaButton is not open. Call mblink_Open.

kMblinkErr_Kill
The tag has been killed and is no longer able to be used for ATA Spec 2000 data.

Appendix A. Codes

Button types

kButtonUnsupported

0

kButton256K

1

kButton512K

2

kButton1M

3

kButton2M

4

kButton4M

5

kButton8M

6

kButton16M

7

kButton32M

8
kButton64M

9

kButton128M

10
kButton256M

11
kButton512M

12
kButton1G

13
kButton2G

14
kButton4G

15
kButton8G

16
kButton16G

17
kButton32G

18
File Access

fileaccess_readonly

0

fileaccess_readwrite

1

File Seek

fileseek_start

0

fileseek_curr

1

fileseek_end

2
Error codes

kMblinkErr_None

0

kMblinkErr_General

1

kMblinkErr_Write

2

kMblinkErr_Read

3

kMblinkErr_Format

4

kMblinkErr_HeaderChecksum

5

kMblinkErr_BadFAT

6

kMblinkErr_UnsupportedVersion

7

kMblinkErr_Checksum

8

kMblinkErr_ReadOnly

9

kMblinkErr_InvalidSerialNumber

10

kMblinkErr_InvalidLength

11

kMblinkErr_InvalidMetaID

12

kMblinkErr_NoContact

22

kMblinkErr_LostContact

23

kMblinkErr_WrongButton

24

kMblinkErr_ReadUsb

30

kMblinkErr_WrongReadUsbLength

31
kMblinkErr_WriteUsb

32
kMblinkErr_WrongWriteUsbLength

33

kMblinkErr_Timeout

34

kMblinkErr_InvalidPointer

35

kMblinkErr_InvalidIndex

36

kMblinkErr_InvalidFilename

49

kMblinkErr_NotOpen

50

kMblinkErr_AlreadyOpen

51

kMblinkErr_InvalidFileNumber

52

kMblinkErr_UnableToOpenLocalFile

53

kMblinkErr_FileTooBig

54

kMblinkErr_FieldNotFound

55

kMblinkErr_FieldTooBig

56

kMblinkErr_FileExists

57

kMblinkErr_FileNotFound

58

kMblinkErr_PasswordRequired

59

kMblinkErr_InvalidPassword

60

kMblinkErr_NoPassword

61

kMblinkErr_InsufficientSpace

62

kMblinkErr_FilenameTooLong

63

kMblinkErr_FilenameInvalidChars

64

kMblinkErr_FilePartial

65

kMblinkErr_FileNotPartial

66

kMblinkErr_NullFilename

67

kMblinkErr_NoTimestamp

68

kMblinkErr_FileInUse

69

kMblinkErr_DirExists

70

kMblinkErr_DirNotFound

71

kMblinkErr_InvalidDirNumber

72

kMblinkErr_DirNotEmpty

73

kMblinkErr_CannotDeleteCurrentDir

74

kMblinkErr_CannotDeleteRootDir

75

kMblinkErr_NoParent

76

kMblinkErr_CannotRenameRootDir

77

kMblinkErr_FileAlreadyOpen

80

kMblinkErr_FileNotOpen

81

kMblinkErr_EOF

82

kMblinkErr_UnexpectedEOF

83

kMblinkErr_InvalidRefNum

84

kMblinkErr_SOF

85

kMblinkErr_NoPreviewAvailable

90

kMblinkErr_InvalidPreview

91
kMblinkErr_DeviceNotFound

100

kMblinkErr_UnableToOpen

101

kMblinkErr_DeviceInUse

102

kMblinkErr_DeviceAlreadyOpen

103

kMblinkErr_DeviceNotOpen

104

kMblinkErr_DeviceHandle

105

kMblinkErr_DeviceOpen

106

kMblinkErr_DeviceVersionInvalid

107

kMblinkErr_Status

200

kMblinkErr_UnknownButtonType

201

kMblinkErr_CMB_NotReady

300

kMblinkErr_FSFull

500

kMblinkErr_RestrictedPage

501

kMblinkErr_MemoryAllocation

700

kMblinkErr_FilesOpen

800

kMblinkErr_FileDamaged

900

kMblinkErr_Kill

4096

kMblinkErr_Unknown

9999

Feedback codes

feedback_general

1

feedback_progressmax

100

feedback_progresspos

101

feedback_writing

200

feedback_writingdone

201

feedback_reading

300

feedback_readingdone

301

feedback_fsupdate

400

feedback_fsupdatedone

401

Appendix B. Functions

General Functions

int mblink_RegisterFeedbackHWND(HWND aHWND);

int mblink_GetDLLVersion(unsigned char *pbyMajor, unsigned char *pbyMinor, unsigned long *pdwExtended);

int mblink_On(void);

int mblink_Off(void);

int mblink_Open(void);

int mblink_Close(void);

int mblink_Contact(unsigned char *pbyContact);

int mblink_GetButtonType(unsigned char *pbyType);

int mblink_GetFreeSpace(unsigned long *dwFreeSpace);

int mblink_GetLotNumber(word *wLotNumber);

int mblink_GetRunNumber(dword *dwRunNumber);

int mblink_GetSerialNumStr(char *pszSerialStr, unsigned short wMaxSize);

Directory Functions

int mblink_GetNumDirs(unsigned short *wCount);

int mblink_GetDirNameByNumber(unsigned short wDir, char *pszDirName, unsigned short wMaxSize);

int mblink_AddDir(char *pszDirName);

int mblink_DeleteDir(char *pszDirName);

int mblink_ChDir(char *pszDirName);

int mblink_ChDirByNumber(unsigned short wDir);

int mblink_GetCurrentPath(char *pszDirName, unsigned short wMaxSize);

int mblink_GetDirAccess(char *pszDirName, unsigned char *byReadPassword, unsigned char *byWritePassword);

int mblink_GetDirAccessByNumber(unsigned short wDir, unsigned char *byReadPassword, unsigned char *byWritePassword);

int mblink_GetNumFiles(unsigned short *wCount);

int mblink_GetFileSizeByNumber(unsigned short wFile, unsigned long *dwFileSize);

int mblink_GetFileNameByNumber(unsigned short wFile, char *pszFileName, unsigned short wMaxSize);

int mblink_GetFileAccess(char *pszFileName, unsigned char *byReadPassword,

int mblink_GetFileAccessByNumber(unsigned short wFile, unsigned char *byReadPassword, unsigned char *byWritePassword, unsigned char *byPartial);

//

// specify dir passwords for access

//

int mblink_DirReadPassword(char *pszDirName, char *pszPassword);

int mblink_DirWritePassword(char *pszDirName, char *pszPassword);

//

// set dir passwords (takes effect at next close)

//

int mblink_SetDirReadPassword(char *pszDirName, char *pszPassword);

int mblink_SetDirWritePassword(char *pszDirName, char *pszPassword);

//

// remove dir passwords (takes effect at next close)

//

int mblink_RemoveDirReadPassword(char *pszDirName);

int mblink_RemoveDirWritePassword(char *pszDirName);

File Functions

int mblink_ValidateFilename(char *szFilename);
int mblink_AddFile(char *pszSource, char *pszFilename);

int mblink_AddFileEx(char *pszSource, char *pszFilename, char *pszReadPassword, char *pszWritePassword);

int mblink_CreateFile(char *pszFilename, unsigned long dwFileSize, unsigned char byFillValue);

int mblink_CreateFileEx(char *pszFilename, unsigned long dwFileSize, unsigned char byFillValue, char *pszReadPassword, char *pszWritePassword);

int mblink_DeleteFile(char *pszFilename);

int mblink_DeleteFileByNumber(unsigned short wFile);

int mblink_ResizeFile(char *pszFilename, unsigned long dwNewSize);

int mblink_ResizeFileByNumber(unsigned short wFile, unsigned long dwNewSize);

int mblink_GetFile(char *pszFilename, char *pszDest);

int mblink_GetFileByNumber(unsigned short wFile, char *pszDest);

int mblink_RecoverFileByNumber(unsigned short wFile);

int mblink_GetFileMetaByNumber(unsigned short wFile, unsigned long wFieldID, char *pszData, unsigned short wMaxSize);

//

// specify file passwords for access

//

int mblink_FileReadPassword(char *pszFilename, char *pszPassword);

int mblink_FileWritePassword(char *pszFilename, char *pszPassword);

int mblink_FileReadPasswordByNumber(unsigned short wFile, char *pszPassword);

int mblink_FileWritePasswordByNumber(unsigned short wFile, char *pszPassword);

//

// set file passwords

//

int mblink_SetFileReadPassword(char *pszFilename, char *pszPassword);

int mblink_SetFileWritePassword(char *pszFilename, char *pszPassword);

int mblink_SetFileReadPasswordByNumber(unsigned short wFile, char *pszPassword);

int mblink_SetFileWritePasswordByNumber(unsigned short wFile, char *pszPassword);

//

// remove file passwords

//

int mblink_RemoveFileReadPassword(char *pszFilename);

int mblink_RemoveFileWritePassword(char *pszFilename);

int mblink_RemoveFileReadPasswordByNumber(unsigned short wFile);

int mblink_RemoveFileWritePasswordByNumber(unsigned short wFile);

ATA Spec 2000 Tag Functions

unsigned short mblink_TagAtaSpec2000UserMemoryRead(unsigned char *buffer, unsigned short wSize, unsigned char *pbyMode);

unsigned short mblink_TagAtaSpec2000ReadEpc(unsigned char *buffer, unsigned short wSize, unsigned char *pbyMode);

unsigned short mblink_TagAtaSpec2000WriteEpc(unsigned char *buffer, unsigned short wSize, bool bDemoMode);

unsigned short mblink_TagAtaSpec2000ReadTid(unsigned char *buffer, unsigned short wSize, unsigned char *pbyMode);

unsigned short mblink_TagAtaSpec2000WriteTid(unsigned char *buffer, unsigned short wSize, bool bDemoMode);

unsigned short mblink_TagAtaSpec2000FormatHighMemory(unsigned short wUserMemorySizeBytes, unsigned char *BirthData, unsigned char *CurrentData, unsigned short wCurrentDataSizeBytes, unsigned char *ScratchpadData, unsigned short wScratchpadSizeBytes, bool bDemoMode);

unsigned short mblink_TagAtaSpec2000HistoryRecordAdd(unsigned char *buffer);

unsigned short mblink_TagAtaSpec2000ScratchpadRecordWrite(unsigned char *buffer);

unsigned short mblink_TagAtaSpec2000CurrentDataRecordWrite(unsigned char *buffer);

unsigned short mblink_TagAtaSpec2000BirthRead(unsigned char *buffer, DWORD dwSizeMax, DWORD dwSizeActual, DWORD dwClock, unsigned char *pbyMode);

unsigned short mblink_TagAtaSpec2000CurrentDataRead(unsigned char *buffer, DWORD dwSizeMax, DWORD dwSizeActual, DWORD dwClock, unsigned char *pbyMode);

unsigned short mblink_TagAtaSpec2000ScratchpadRead(unsigned char *buffer, DWORD dwSizeMax, DWORD dwSizeActual, DWORD dwClock, unsigned char *pbyMode);

unsigned short mblink_TagAtaSpec2000PartHistoryRecordCount(void);

unsigned short mblink_GetNumSysFiles(void);

unsigned short mblink_TagAtaSpec2000Mode(void);

unsigned short mblink_TagAtaSpec2000ModeAvailable(void);

unsigned short mblink_TagAtaSpec2000Formatted(unsigned char *pbyMode);

unsigned short mblink_TagAtaClear(void);

unsigned short mblink_TagKill(unsigned long dwPassword);

unsigned short mblink_TagAtaSpec2000UserMemoryWriteFlag(bool bWriteNoDelay);

unsigned short mblink_TagAtaSpec2000UserMemoryWrite();

Appendix C. Meta Data

Application readable

sysmeta_filename

1

sysmeta_path

2

sysmeta_cryptomethod

3

Application read/writeable

sysmeta_location

8001

sysmeta_location_created

8002

sysmeta_location_modified

8003

sysmeta_mimetype

8100

sysmeta_volumelabel

8200

sysmeta_location, sysmeta_location_created, sysmeta_location_modified

Used to associate a file/directory with a physical location.

DATUM:DATA

eg.

WGS84:N 44 05.154 W 121 18.537

UTM:10T E 635383 N 4882804

sysmeta_mimetype

The MIME type of the file. Eg. text/html, image/jpeg, etc.

INDEX
D
Damaged Files
8

Directories
4

F
File I/O
10

Block I/O
10

M
MBFS
See MegaButton File System

mblink_AddDir
17

mblink_AddFile
23

mblink_ChDir
18

mblink_Close
15

mblink_Contact
15

mblink_DeleteDir
18

mblink_DeleteFile
23

mblink_DirReadPassword
21

mblink_DirWritePassword
21

mblink_FileClose
27

mblink_FileOpenBlk
26

mblink_FileReadBlk
27

mblink_FileReadPassword
28

mblink_FileSeekBlk
27

mblink_FileWriteBlk
28

mblink_FileWritePassword
28

mblink_GetButtonType
15

mblink_GetCurrentPath
18

mblink_GetDirAccess
19

mblink_GetDirMeta
19

mblink_GetDirNameByNumber
17

mblink_GetDLLVersion
13

mblink_GetFile
24

mblink_GetFileAccess
20

mblink_GetFileCreatedUTC
24

mblink_GetFileMeta
25

mblink_GetFileModifiedUTC
25

mblink_GetFileNameByNumber
20

mblink_GetFileSize
20

mblink_GetFreeSpace
15

mblink_GetMblinkVersion
13

mblink_GetNumDirs
16

mblink_GetNumFiles
20

mblink_GetNumSysFiles
36

mblink_GetSerialNumStr
16

mblink_Off
14

mblink_On
13

mblink_Open
14

mblink_RegisterFeedbackHWND
14

mblink_RemoveDirReadPassword
22

mblink_RemoveDirWritePassword
22

mblink_RemoveFileReadPassword
29

mblink_RemoveFileWritePassword
29

mblink_SetDirMeta
19

mblink_SetDirReadPassword
21

mblink_SetDirWritePassword
22

mblink_SetFileMeta
26

mblink_SetFileReadPassword
29

mblink_SetFileWritePassword
29

mblink_TagAtaClear
37

mblink_TagAtaSpec2000BirthRead
33

mblink_TagAtaSpec2000CurrentDataRead
34

mblink_TagAtaSpec2000CurrentDataRecordWrite
33

mblink_TagAtaSpec2000FormatHighMemory
32

mblink_TagAtaSpec2000Formatted
37

mblink_TagAtaSpec2000HistoryRecordAdd
33

mblink_TagAtaSpec2000Mode
37

mblink_TagAtaSpec2000ModeAvailable
37

mblink_TagAtaSpec2000PartHistoryRead
35

mblink_TagAtaSpec2000PartHistoryRecordCount
35

mblink_TagAtaSpec2000RecordCount
36

mblink_TagAtaSpec2000ScratchpadRead
35

mblink_TagAtaSpec2000ScratchpadRecordWrite
33

mblink_TagAtaSpec2000UserMemoryRead
30

mblink_TagAtaSpec2000UserMemoryWrite
38

mblink_TagAtaSpec2000UserMemoryWriteFlag
38

mblink_TagKill
38

mblink_TagReadEpc
30

mblink_TagReadTid
31

mblink_TagWriteEpc
31

mblink_TagWriteTid
31

mblink_ValidateFilename
22

MegaButton File System
1

Meta Data
9

P
Passwords
5

T
Timestamps
5

PAGE
Mega ButtonLink APIs.doc
 Page 1 of 48

_1284459694.doc

MacSema, Inc.

62971 Plateau Drive (Suite 400 (Bend, Oregon 97701 USA (Phone (541) 389-1122 (Fax (541) 389-1888

(� HYPERLINK "mailto:techsupport@macsema.com" ��techsupport@macsema.com� (� HYPERLINK "http://www.macsema.com" ��www.macsema.com�

